Accelerating Queries with Group-By and Join By Groupjoin

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 这篇paper介绍了HyPer中引入的groupjoin算子,针对 join + group by这种query,可以在某些前提条件下,在join的过程中同时完成grouping+agg的计算。比如用hash table来实现hash join和group by,就可以避免再创建一个hash table,尤其当join的数据量很大,产生的group结果又较少时,可以很好的提升执行效率。

这篇paper介绍了HyPer中引入的groupjoin算子,针对 join + group by这种query,可以在某些前提条件下,在join的过程中同时完成grouping+agg的计算。

比如用hash table来实现hash join和group by,就可以避免再创建一个hash table,尤其当join的数据量很大,产生的group结果又较少时,可以很好的提升执行效率。

文中提出了2个等价的变换:

  1. left outer join + group by =>  groupjoin
  2. inner join + group by => groupjoin

这个变换的前提是存在某些Functional Dependency!

这种变换是一种特定情况下针对物理实现的优化,所以总是benificial的,不会带来负面效果。

基本术语

基本概念及标记

在之前涉及HyPer的文章中,已经介绍了F(e) 这个符号,表示e中引用的属性集合。

{ .}s 表示set(无重复),{ .}b表示bag(multiset,可重复)。

image.png表示投影, image.png表示去重投影。

image.png表示mapping操作,对于e1的每条Input tuple,计算e2这个表达式,结果保存在一个新的属性列a中。

对于 = 操作,如果null = null,结果是unknown,但在grouping的计算中,null = null是成立的,用在=上加(.)来表示。

A -> TID(e) 表示属性列集合A的元素,可以functional决定e的一行数据。

image.png表示在属性列集合A上,均为NULL值。

  • 聚集函数的特性

如果聚集函数可以分步骤完成(局部 -> 全局),称这种聚集函数是decomposable的:

image.png

其中 image.png,且X, Y无交集。这种属性可以保证聚集操作被拆分为任意粒度,各自独立做局部计算,然后再做全局汇总,仍可得到正确结果。

image.png

上图是SQL中最常见的decomposable聚集函数,其中 image.png 是对non-null值的计数。

扩展这个概念来描述对多个属性列,各自独立的计算agg函数的aggregation vector:

image.png

其中每个aggi表示第i个聚集函数,其局部的聚集结果是 image.png,bi则是全局的聚集结果。

如果对于一个aggregation vector F以及对应的两个expression e1/e2。可以做如下拆分:

image.png  且 image.pngimage.png

即F1和F2各自表示一部分vector中的一部分聚集函数,且F1仅引入e2的列,F2仅引用e1的列,则称F是splittable的。

例如sum(a1 + a2) = sum(a1) + sum(a2),这个sum聚集是可以针对不同属性列拆开计算的。

注意,decomposability 和 splittability 是可以做groupjoin的前提条件!

此外,一些聚集函数是对重复值不敏感的,比如min/max/aggr(distinct),其他则是敏感的,比如普通的sum/count/avg。

Left Outer Join

这里对其描述进行了一个扩展,允许在join不上做填充时,对某些指定的列,填充某个default value,而不是NULL值:

image.png

以上公式中,D = d1 : c1; ... dk : ck,表示在di这些列上,设置默认的填充值为ci。这对于后面groupjoin的等价转换时有意义。

Group By

这里只列出一个简单形式的标记方式,已经足够用来理解后续的内容:

image.png

其中G是group by列集合,g是聚集结果向量,Fg是聚集函数vector。

GroupJoin

image.png

GroupJoin是一种物理上的优化实现,方式是:

两个表e1/e2执行join image.png,对于外表e1的一行数据y,内表e2所有可以与其join上的行集合{x},形成一个bag (multiset) ,对这个bag应用函数f后得到的一个标量结果并append到y后面,构成了新的属性列g。而这一组数据,就完整的对应了实际的一个分组数据!这样当join结束时,所有分组的计算都完成了。

简略的记法是

image.png

例如这样一个groupjoin:

select e1.a1, sum(e2.b2) as c2
from e1 join e2 on e1.a1 = e2.a2
group by e1.a1;

其执行过程如下

  1. 先在e1.a1列上,build hash table
  2. 聚集函数c2由于是sum,其值初始化为0
  3. e2的每行数据t2进行probe,如果可以匹配a1 = a2,则更新t2中的属性列所对应的那个聚集函数,这里是sum(b2),累计e2.b2到结果c2中。
  4. probe完成,所有e1行的聚集函数已经计算完成,结果输出

注意groupJoin的一个特点是,外表e1的输入是没有重复的,这样在groupjoin完成后生成的分组列+聚集函数才能没有重复,从而得到最终聚集结果。

image.png

例如上图中,第一个groupjoin,由于左表有重复值,最终结果中也按照a1存在重复值,不是最终结果(如果要得到最终聚集结果,需要二次聚集)。而第二个groupjoin,左表没有重复值,因此可以得到正确结果。

等价形式

group的基本特性

image.png

G是G+的子集,也就是先在一个更细粒度的分区(G+决定),做局部聚集,再在更粗粒度的最终group列上,做全局聚集,和直接在粗粒度做全局聚集效果相同。

存在functional dependency时可以更进一步,如果 G -> G’ 这种FD成立,则如下等式成立:

image.png

虽然G'中包含更多分组列,但由于FD的决定关系,这些列不会改变G所决定的分组情况,所以加不加这些冗余列,结果没有区别,这样就可以引导我们对Group列进行化简,去掉被决定的冗余列,使group列数量最小化提高计算效率。这和上一篇SCOPE优化器中提到的group列的reduction策略是一致的:

假设 H -> G,则多出来的冗余列记为 G\H。在聚集时,这些列的值会被H的值所唯一决定,所以每个分组只需要copy一下这些列的值就可以了。

如果每个group在join之后只有一行数据,即对于join的结果e, G -> TID(e),则可以直接去掉group by + agg。

Groupjoin的基本特性

GroupJoin可以描述成等价的形式:

image.png

根据groupjoin的语义,e1的一行t1,对应的e2的所有join行t2集合,构成一个分组,如果聚集函数F只针对e2的列,则可以先对e2,针对J2做聚集,然后再和t1 join,结果是等价的。

这里有一个特例,就是count(*)的处理,当join不上时,e2这边是空bag,count(*) = 0,但实际中因为有t1这行,count(*)应该是1,这时可以使用前面提到的带有default value的left outer join,对count(*)的列设置default value为1,即可。

应用条件

left outer join + group by => groupjoin

有了以上的一系列等价变形后,paper给出可以将left outer join + group by转换为groupjoin的前提条件,先补充几个标记法:

对于分组列 G,其包含G1 + G2,分别属于e1,e2左右两个relation。

image.png,也就是任一侧的分组列+join列

image.png. 即只针对e2表的列做聚集

image.png

满足以上4个条件,则可以应用groupjoin的执行方式。让我们逐条看下

  1. condition 1意味着一个分组G只对应e1表的一行数据,不会有e1的两行数据属于同一个分组。这和前面讨论的,对e1的每一行,join的结果形成一个分组的结论一致。此外 image.png的意思是, image.png相对于G来说并不是一个更细粒度的分组!如果是更细的分组,会导致G的一组数据,可能包含多个G2 + J2值对应的分组,因此一次join结果是不完全的。
  2. condition 2意味着J2 -> G2,也就是J2的join值确定,e2表的group列值也就确定了,即具有相同join值的结果,也同时具有相同的G2值,如果这条不成立,则一次join的结果会属于不同的分组。
  3. condition 3其实是可以放松的,列在这里个人理解是从实现简单的角度考虑。
  4. condition 4要求聚集函数对于NULL值的处理与空集的处理一致,例如count(NULL) = count( image.png)。

Inner join + group =>  groupjoin

{   "src": "",   "status": "error",   "percent": 0,   "align": "left",   "linkTarget": "_blank",   "display": "inline",   "message": "图片不支持拷贝复制,请单独复制上传",   "size": 0 }

转换的前提条件基本和上节一致,只是增加了谓词c2 > 0,可以拒绝掉e2上填充的NULL值。

示例

以TPC-H(SF=1) Q13为例

select c_count, count(*) as custdist
from 
(select c_custkey, count(o_orderkey) as c_count
 from customer left outer join
 orders 
 on c_custkey = o_custkey
and o comment not like
'%special%requests%'
 group by c_custkey
) 
as c_orders(c_custkey, c_count)
group by c_count
order by custdist desc, c_count desc;

观察Q13可以推导出如下等价式:

image.png

对于其内层查询,由于c_custkey是左表customer的主键,因此可以应用left outer join + group by => groupjoin的优化:

image.png

执行时间从284ms -> 84ms,降低为原本的1/3,有很显著的提升效果。

从前面的等价条件上看,貌似是非常苛刻的前提条件,但在实际的用户场景中还是经常可以被满足的,比如Q13这种主外键join:

J1是e1的主键,且J1 属于group列,group列都是e1的列而agg函数只针对e2的列。

总结

groupjoin是一个非常具体的,小型的局部优化,针对场景比较固定,也比较容易集成到现有系统当中,有不会有什么负面效果,即使是像MySQL这种没有明确的funtional dependency推导系统的优化器,也可以再缩小适用场景,比如group by列包含左表的主键而不包含右表列的情况,这样也能得到不小的优化提升,也给后续优化留下空间。因此个人感觉还是具有很高的投入/产出比的,值得一做。

目录
相关文章
|
算法 计算机视觉 知识图谱
ACL2022:A Simple yet Effective Relation Information Guided Approach for Few-Shot Relation Extraction
少样本关系提取旨在通过在每个关系中使用几个标记的例子进行训练来预测句子中一对实体的关系。最近的一些工作引入了关系信息
135 0
|
数据库
解决which is not functionally dependent on columns in GROUP BY clause;...sql_mode=only_full_group_by
解决which is not functionally dependent on columns in GROUP BY clause;...sql_mode=only_full_group_by
309 0
|
SQL 关系型数据库 BI
PG:什么是grouping sets
PG:什么是grouping sets
132 0
|
算法 数据处理
Volcano - An Extensible and Parallel Query Evaluation System 论文解读
前面写了一些关于优化器的文章,现在开个小差,写一些执行器的paper介绍,从这篇开始。 这篇是Graefe的Volcano Project的执行器框架,其概念已被广泛接受和使用,也就是我们最为熟悉的Volcano iterator的执行框架,关于volcano/cascades的优化器介绍
753 0
1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'information_schema.PROFILING.SEQ' which is not functionally dependent on columns in GROUP BY clause
1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'information_schema.PROFILING.SEQ' which is not functionally dependent on columns in GROUP BY clause
210 0
1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'information_schema.PROFILING.SEQ' which is not functionally dependent on columns in GROUP BY clause
|
机器学习/深度学习 人工智能 开发框架
IJCAI_2020_Channel Pruning via Automatic Structure Search
1 摘要 通道修剪是压缩深层神经网络的主要方法之一。
195 0
IJCAI_2020_Channel Pruning via Automatic Structure Search
PAT (Advanced Level) Practice - 1030 Travel Plan(30 分)
PAT (Advanced Level) Practice - 1030 Travel Plan(30 分)
115 0
Data Structures and Algorithms (English) - 6-6 Level-order Traversal(25 分)
Data Structures and Algorithms (English) - 6-6 Level-order Traversal(25 分)
106 0
Data Structures and Algorithms (English) - 6-10 Sort Three Distinct Keys(30 分)
Data Structures and Algorithms (English) - 6-10 Sort Three Distinct Keys(30 分)
106 0
|
C++
Data Structures and Algorithms (English) - 6-9 Sort Three Distinct Keys(20 分)
Data Structures and Algorithms (English) - 6-9 Sort Three Distinct Keys(20 分)
126 0