【学习记录】《DeepLearning.ai》第四课:深层神经网络(Deep L-layer neural network)

简介: 2121/9/4第四课结束

第四课:深层神经网络(Deep L-layer neural network)

4.1 深层神经网络

主要需要掌握一些符号,如下图:

image


4.2 前向传播和反向传播(Forward and backward propagation)

​ 反向传播的向量化实现:

image


4.3 深层网络中的前向传播(Forward propagation in a Deep Network)

对于前项传播向量化实现过程可以归纳为多次迭代如下公式:

$$ Z^{[l]}=W^{[l]}A^{[l-1]}+b{[l]}(l表示层数)\\ A^{[l]}=g^{[l]}(Z^{[l]})其中(A^{[0]}=X) $$

该过程是在整个训练集上进行的,而且要遍历每一层,需要用到一个显式for循环,从1到L进行遍历。


4.4 核对矩阵的维度(Getting your matrix dimensions right)

对于单个训练样本:

$$ z^{[l]}=w^{[l]}a^{[l-1]}+b{[l]}(l表示层数)\\ a^{[l]}=g^{[l]}(z^{[l]})其中(a^{[0]}=x) $$

其中对应矩阵的维度如下:

$$ z^{[l]}或a^{[l]}:(n^{[l]},1)\\ w^{[l]}或dw^{[l]}:(n^{[l]},n^{[l-1]})\\ b^{[l]}或db^{[l]}:(n^{[l]},1) $$

对于向量化m个样本后的矩阵:

$$ Z^{[l]}=W^{[l]}A^{[l-1]}+b{[l]}(l表示层数)\\ A^{[l]}=g^{[l]}(Z^{[l]})其中(A^{[0]}=X) $$

其中对应矩阵的维度如下:

$$ Z^{[l]}、dZ^{[l]}、A^{[l]}、dA^{[l]}:(n^{[l]},m)\\ W^{[l]}或dW^{[l]}:(n^{[l]},n^{[l-1]})\\ b^{[l]}或db^{[l]}:(n^{[l]},m)\\ l=0时,A^{[0]}=X=(n^{[l]},m) $$


4.5 为什么使用深层表示?

PASS


4.6 搭建神经网络块

介绍整个传播步骤:

image

如上图,上面一行蓝色箭头表示正向传播的过程,其中得到了缓存$cache z^{[l]}$​​​​用于反向传播,红色箭头表示反向传播的过程,方框中的参数是整个过程中所需要的参数,整个绿色箭头表示了整个神经网络的过程,得到:

$$ W^{[l]}=W^{[l]}-\alpha{d}W^{[l]}\\ b^{[l]}=b^{[l]}-\alpha{d}b^{[l]} $$


4.7 参数 VS 超参数(Parameters Vs Hyperparameters)

要想使得神经网络起到很好的效果,必须规划参数以及超参数。

参数:

$W^{[l]},b^{[l]}$

超参数:

算法中的学习率($\alpha$​​),梯度下降法循环的迭代次数,隐藏层的数目(L),隐藏层单元数目($n^{[l]}$​,激活函数的选择,这些参数控制着最后的参数$W,b$的值,因此称为超参数。

如何寻找超参数的最优值:

image

走Idea—Code—Experiment—Idea这个循环 尝试各种不同的参数 实现模型并观察是
否成功,然后再迭代。


4.8 深度学习和大脑的关联性

毫无关联!

OVER!

相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
1086 56
|
5月前
|
人工智能 云栖大会 调度
「2025云栖大会」“简单易用的智能云网络,加速客户AI创新”专场分论坛诚邀莅临
”简单易用的智能云网络,加速客户AI创新“专场分论坛将于9月24日13:30-17:00在云栖小镇D1-5号馆举办,本场技术分论坛将发布多项云网络创新成果,深度揭秘支撑AI时代的超低时延、自适应调度与跨域协同核心技术。同时来自领先企业的技术先锋将首次公开其在模型训练、企业出海等高复杂场景中的突破性实践,展现如何通过下一代云网络实现算力效率跃升与成本重构,定义AI时代网络新范式。
227 4
|
6月前
|
人工智能 自然语言处理 搜索推荐
上下文学习的神奇魔法:轻松理解AI如何无师自通
你有没有想过,为什么给GPT几个例子,它就能学会新任务?这就像魔法一样!本文用轻松幽默的方式解密上下文学习的原理,通过「智能客服训练」场景,带你理解AI如何像人类一样从示例中学习,无需额外训练就能掌握新技能。
266 28
|
5月前
|
存储 人工智能 搜索推荐
一种专为AI代理设计的内存层,能够在交互过程中记忆、学习和进化
Mem0 是专为 AI 代理设计的内存层,支持记忆、学习与进化。提供多种记忆类型,可快速集成,适用于开源与托管场景,助力 AI 代理高效交互与成长。
650 123
一种专为AI代理设计的内存层,能够在交互过程中记忆、学习和进化
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
迁移学习:让小数据也能驱动AI大模型
迁移学习:让小数据也能驱动AI大模型
394 99
|
6月前
|
机器学习/深度学习 传感器 人工智能
深度神经网络驱动的AI Agent
深度神经网络(DNN)驱动的AI Agent在实时预测中展现出强大能力,能够通过在线学习快速适应变化,广泛应用于金融、自动驾驶等领域,提升预测效率与决策水平。
|
6月前
|
数据采集 人工智能 前端开发
AI智能体如何从错误中学习:反思机制详解
探索AI智能体的反思能力:从哲学思考到技术实现,看AI如何像人类一样从错误中学习和成长。通过轻松有趣的方式,深入了解Reflexion和ReAct等前沿框架,掌握让AI更智能的核心秘密。
505 0
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
325 0
|
5月前
|
人工智能 运维 安全
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
迈格网络推出“天机”新版本,以AI自学习、全端防护、主动安全三大核心能力,重构网络安全防线。融合AI引擎与DeepSeek-R1模型,实现威胁预测、零日防御、自动化响应,覆盖Web、APP、小程序全场景,助力企业从被动防御迈向主动免疫,护航数字化转型。
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
|
4月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
364 6

热门文章

最新文章