EMR on ACK 全新发布,助力企业高效构建大数据平台

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
简介: 阿里云 EMR on ACK 为用户提供了全新的构建大数据平台的方式,用户可以将开源大数据服务部署在阿里云容器服务(ACK)上。利用 ACK 在服务部署和对高性能可伸缩的容器应用管理的能力优势,用户只需要专注在大数据作业本身。用户可以便捷地将 Spark、Presto、Flink 作业执行在 ACK 集群上,100%兼容开源,性能优于开源。

  阿里云 EMR on ACK 为用户提供了全新的构建大数据平台的方式,用户可以将开源大数据服务部署在阿里云容器服务(ACK)上。利用 ACK 在服务部署和对高性能可伸缩的容器应用管理的能力优势,用户只需要专注在大数据作业本身。用户可以便捷地将 Spark、Presto、Flink 作业执行在 ACK 集群上,100%兼容开源,性能优于开源。


一、背景介绍

技术趋势  

  • 存储与计算分离,向云原生演进
  • 在线业务、AI、大数据统一接入 ACK 集群,错峰调度,离线在线混部,提升机器利用率
  • 统一运维入口,统一运维工具链,统一监控体系
  • 以集群为中心->以作业为中心
  • 多版本支持,例如可以同时跑 Spark2.x、Spark3.x


云原生面临挑战

  • 计算与存储分离:如何构建以对象存储 OSS 为底座的 HCFS 文件系统

• 需要完全兼容现有的 HDFS

• 性能对标 HDFS,成本降低

  • 计算引擎 shuffle 数据存算分离:如何解决 ACK 混合异构机型

• 异构机型没有本地盘

• 社区[ Spark-25299]讨论,支持 Spark 动态资源,成为业界共识

  • ACK 调度能力:如何解决调度性能瓶颈

• 性能对标 Yarn

• 多级队列管理

  • 错峰调度

• 借助 K8s 操作系统能力,编排组织各种业务的波峰波谷


EMR on ACK 优势

  • Remote Shuffle Service 提供中间 shuffle 数据的存储计算分离方案

• 可以使计算节点无需本地盘和云盘

• 支持打开 Spark 动态资源功能,Spark-25299 终极方案

  • JindoFS 针对 OSS 存储提供湖加速解决方案

• Block 模式1TB TPCDS 场景下有15%以上的性能提升

  • 调度层面支持 Scheduler Framework V2

• 调度性能比社区提升3x以上

• 提供多级队列管理

  • 引擎能力增强

• 10TB TPCDS Benchmark 场景下,EMR Spark 比社区有3x性能提升

• Hudi、DeltaLake 比社区功能性能增强

  • 完整的错峰调度方案


二、EMR 容器化架构

EMR on ACK 架构

B6E96596-E258-479c-B9EE-1ADE827BEA73.png

  • 轻量化管控,对接已有数据平台
  • 通过数据开发集群/调度平台提交到不同的执行平台
  • 错峰调度,根据业务高峰低峰策略调整
  • 云原生数据湖架构,ACK 弹性扩缩容能力强
  • ACK 管理异构机型集群,灵活性好


三、产品介绍

产品首页

参考链接https://www.aliyun.com/product/emapreduce

EMR on ACK Beta 版,前往体验>>

image.png

新建集群

  • 地域:目前开放杭州、上海、北京、深圳等地域(持续开放中)
  • 集群类型:Spark 、Shuffle Service、Presto
  • Spark — 通用的分布式大数据处理引擎

     • 提供了 ETL、离线批处理、数据建模等能力

  • Shuffle Service针对 EMR 计算引擎提供优化的 Shuffle 服务

解决 Kubernetes 下对本地盘的依赖问题

解决大规模计算集群的网络和磁盘的 IO 瓶颈

支持计算与存储分离的架构,可服务多个 EMR 集群

  • Presto 基于内存的分布式 SQL 交互式查询引擎

     • 支持多种数据源

适合 PB 级海量数据的复杂分析,以及跨数据源的查询

  • 组件版本:Spark (3.1.1)
  • 专属节点:

• 现有 ACK 集群,share 部分节点给到 EMR

• 新建 ACK 集群,可选择整个集群为专属节点

  • OSS Bucket:用于存储作业、日志、jar 包等信息

image.png

集群管理

image.png

  • 集群 ID/名称:点击进入作业管理

image.png

  • 集群状态:检测集群是否可用
  • 所属 ACK 集群:可关联到现有 ACK 集群
  • 配置:Spark 作业配置
  • 释放:释放空间





点击以下链接,直接观看公开课视频,获取讲师实例讲解:

https://developer.aliyun.com/learning/course/837/detail/13999




第一时间掌握产品发布动态,资深技术专家在线答疑,欢迎扫码加入钉钉交流群!

lADPD4BhuZTMXG7NA97NAu4_750_990.jpg

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
1336
分享
相关文章
高科技生命体征探测器、情绪感受器以及传感器背后的大数据平台在健康监测、生命体征检测领域的设想与系统构建
本系统由健康传感器、大数据云平台和脑机接口设备组成。传感器内置生命体征感应器、全球无线定位、人脸识别摄像头等,搜集超出现有科学认知的生命体征信息。云平台整合大数据、云计算与AI,处理并传输数据至接收者大脑芯片,实现实时健康监测。脑机接口设备通过先进通讯技术,实现对健康信息的实时感知与反馈,确保身份验证与数据安全。
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
219 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
百观科技基于阿里云 EMR 的数据湖实践分享
百观科技为应对海量复杂数据处理的算力与成本挑战,基于阿里云 EMR 构建数据湖。EMR 依托高可用的 OSS 存储、开箱即用的 Hadoop/Spark/Iceberg 等开源技术生态及弹性调度,实现数据接入、清洗、聚合与分析全流程。通过 DLF 与 Iceberg 的优化、阶梯式弹性调度(资源利用率提升至70%)及倚天 ARM 机型搭配 EMR Trino 方案,兼顾性能与成本,支撑数据分析需求,降低算力成本。
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
180 15
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
阿里云 EMR 发布托管弹性伸缩功能,支持自动调整集群大小,最高降本60%
阿里云开源大数据平台 E-MapReduce 重磅推出托管弹性伸缩功能,基于 EMR 托管弹性伸缩功能,您可以指定集群的最小和最大计算限制,EMR 会持续对与集群上运行的工作负载相关的关键指标进行采样,自动调整集群大小,以获得最佳性能和资源利用率。
177 15