BigDL:Apache Spark 上的分布式深度学习库

简介: BigDL是 Apache Spark 的分布式深度学习库;使用 BigDL,用户可以将他们的深度学习应用程序编写为标准 Spark 程序,这些程序可以直接运行在现有的 Spark 或 Hadoop 集群之上。为了轻松构建 Spark 和 BigDL 应用程序,为端到端分析 + AI 管道提供了高级Analytics Zoo。

image.png

BigDL:Apache Spark 上的分散学习

什么是BigDL?

BigDL是Apache的火花的分布式深度学习库; 。使用BigDL,用户可以将他们的深度学习应用程序编写为标准火花程序,这些程序可以直接运行在现有的火花或Hadoop的之上集群为了轻松构建火花和BigDL应用程序,为端到端分析+ AI提供管道了高级分析动物园

  • 深度学习支持。Torch为模型,BigDL为深度学习提供全面支持,包括计算计算(通过Tensor)和高级神经网络;此外,用户使用BigDL将预训练的CaffeTorch模型加载到Spark程序中。
  • 极高的性能。为了实现高性能,BigDL在每个火花中任务使用英特尔MKL /英特尔MKL-DNN和多线程编程。因此,比它单节点至强的上开箱即用开源来自Caffe火炬TensorFlow数量几个级(即与主流GPU相当)。通过采用英特尔DL升压,BigDL显着改善了推理延迟和吞吐量。
  • 有效地横向扩展。BigDL 可以通过利用Apache(粒子规模快速的应用数据处理框架)以及在 Spark 上高效实现同步 SGD 和全缩减通信,有效地横向扩展以 Spark 执行“大数据规模”的数据分析。

为什么是BigDL?

在以下情况下,您可能希望使用 BigDL 写深度学习程序:

  • 您想在存储数据存储的同一个大数据(Hadoop/Spark)集群上分析大量数据(例如,在 HDFS、HBase、Hive 等中)。
  • 您想将深度学习功能(训练或预测)添加到您的大数据(Spark)程序和/或工作流中。
  • 您希望利用现有的 Hadoop/Spark 集群来运行您的学习应用程序,然后与其他学习应用程序,例如ETL、数据挖掘、特征工程、经典机器学习、图形分析等)动态共享这些应用程序。

如何使用 BigDL?

相关文章
|
11天前
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台
|
16天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
62 3
|
18天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
29天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
36 1
|
2月前
|
机器学习/深度学习 算法 自动驾驶
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
144 4
|
3月前
|
机器学习/深度学习 计算机视觉 Python
深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件
深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件
103 0
|
3月前
|
机器学习/深度学习 分布式计算 PyTorch
构建可扩展的深度学习系统:PyTorch 与分布式计算
【8月更文第29天】随着数据量和模型复杂度的增加,单个GPU或CPU已无法满足大规模深度学习模型的训练需求。分布式计算提供了一种解决方案,能够有效地利用多台机器上的多个GPU进行并行训练,显著加快训练速度。本文将探讨如何使用PyTorch框架实现深度学习模型的分布式训练,并通过一个具体的示例展示整个过程。
154 0
|
4月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
150 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
65 0
|
3月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
205 0

推荐镜像

更多