揭秘Google地图:算法再强,也需人工

简介:

导航地图近十年已经发生了翻天覆地的变化。上世纪90年代,我们还在用纸质地图寻找目的地。而现在基本只需要服从Siri或她的谷歌竞争对手的导航指令。


“地面真相”(Ground Trut)算法和街景服务

不过这些导航指令背后隐藏着大多数人无法想象的众多数据。目前由于谷歌已经获得了极其庞大的地图数据,他们开始采用大数据方法,或谷歌称之为“地面真相”的算法和细致的人工努力相结合的方法,为用户提供更详尽的地图信息。该项目于2008年推出,但它一直处于保密状态,直到几年前才公开。它持续增长,现已覆盖51个国家。这一算法在提取卫星、空中和街景视图的信息时发挥了巨大的作用。


谷歌“地面真相”算法可以识别的街景信息


谷歌2007年推出了街景服务,通过让人们看到目的地周围的环境来提高用户体验。谷歌地图副总裁布莱恩·麦克伦登(Brian McClendon)。表示,“我们很快就意识到做地图的最佳途径之一,就是拥有全世界的街头照片。


随着街景收集数据的增长,抽查他们的数据已经不是很好的解决方案。谷歌地图产品经理马尼克·古普塔(Manik Gupta)表示,现在街景车已经行驶700多万英里,覆盖美国99%的公共道路,“它实际上使我们能够利用算法建立提取信息之外的新数据层。


这些算法借用计算机视觉和机器学习的方法来提取路边的街道编号、企业名称、限速交通标志等细节信息。 不过很多信息还是非常难以提取,麦克伦登表示,“停止标记常常很容易被忽略。转弯限制对于导航来说也很重要,但对于谷歌的捕捉算法还很难处理。因为这些标记箭头可能是被画在道路上,它们可以是不同的颜色和大小。车道标记的分析更难,因为他们并不一致。”


谷歌地图普通用户不可见的转弯限制信息。


路牌也是非常重要的信息。驾驶者听到的导航指示如果能匹配他们看到的,那么他们就能更好的被指引。但有时街道标志使用的拼写或缩写导致了很多麻烦。“匹配标志上的文字实际上是一个很困难的任务。”


另外,谷歌的算法还可以利用卫星和航空影像提取建筑物的轮廓和高度。美国大多数的建筑物现在都可以在谷歌地图上找到。对于像西雅图太空针塔这样的标志性建筑,计算机视觉技术已经可以提取出详细的3D模型。谷歌曾表示,它收购高分辨率卫星图像公司Skybox就是为了提高其地图的准确性。


计算机视觉技术提取的标志性建筑物3D模型


职业地图纠错团队和MapMaker计划

然而,卫星和算法的能力还是有限。为了提供最好的体验,谷歌雇佣了一只由人类组成的团队,手动检查并使用内部程序Atlas纠正地图的错误。谷歌公司以外很少有人见过这一应用。


这一人工检查团队看到的地图类似于谷歌地图的卫星地图混合视图,但带有没见过的彩色线条和符号。例如,道路根据行进方向进行了颜色编码。绿色和红色箭头指示了给定的交叉路口的可能前进方向。工作人员可以点击屏幕一侧的按钮,拖曳、切换或关闭各种层,控制街景视图拍摄的交通标志的出现和消失。这些工作人员每天要检查数以千计来自谷歌地图用户的错误报告,并根据需要进行修复。



工作人员可以手动将地图道路(左上)对准卫星图像


古普塔还展示了一张显示道路优先级的地图,线的宽度代表交通流量。谷歌一直用手机的位置信号映射交通条件。不过古普塔承认,位置信号也可以是其他信息的良好来源,比如转弯限制或者单行线。但他拒绝详细说明,“谷歌在很多地方使用了位置信息,但我不能谈论具体的东西。


除了职业地图纠错团队,谷歌还得到来自MapMaker计划的帮助。2011年谷歌推出了普通用户可以参与的地图纠错项目,现在的该项目遍及220个国家。目标是提高谷歌地图在发展中国家和其他地区的准确度。因为在那里无法获得详细的地图源,“我们招募用户添加对于他们很重要的地图信息。我们会提供工具和卫星图像,因此他们可以很轻松的进行修正。


用户可以提供公园、步道以及其他街景车无法进入的地方的信息。麦克伦登本人就曾帮助绘制Windy山的登山路径,“我用GPS记录了我登山的路径,完善了更多的精确路线。”


当你在笔记本电脑或手机上使用谷歌地图时,表面的信息之下隐藏着更多的数据。不只是道路的布局,还包括链接一个点到另一个点的逻辑信息。信息不只是建筑物的形状,也许未来谷歌地图只会不断的细节化。最终,呈现出来的可能是让人震惊的世界3D虚拟图像。


道路标志可利用算法从街景中提取,从而提供交通信息

原文发布时间为:2014-12-10

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
4月前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
WK
|
4月前
|
机器学习/深度学习 自然语言处理 算法
PSO算法和人工神经网络有什么不同
PSO算法(粒子群优化)与人工神经网络(ANN)在原理、应用及优化方式上差异显著。PSO模拟鸟群行为,通过粒子协作在解空间中搜索最优解;而ANN模仿大脑神经元结构,通过训练学习输入输出映射,适用于模式识别、图像处理等领域。PSO主要用于优化问题,实时性高,结果直观;ANN则在处理复杂非线性关系方面更强大,但结构复杂,训练耗时长,结果解释性较差。实际应用中需根据需求选择合适技术。
WK
55 0
|
5月前
|
存储 算法 数据可视化
【Python】实现二维装箱Bottom-Left算法及用人工蜂群算法改进
本文介绍了二维装箱问题的Bottom-Left算法,并提供了Python实现,包括主函数、装箱顺序、重叠检测、最终位置计算等,同时指出了算法的缺点并提出了使用人工蜂群算法进行改进的方法,最后提供了完整代码的下载链接。
172 1
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
|
6月前
|
机器学习/深度学习 算法 数据可视化
Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
|
7月前
|
域名解析 JavaScript 网络协议
技术心得记录:如何使用google地图的api(整理)
技术心得记录:如何使用google地图的api(整理)
549 0
|
算法 测试技术 定位技术
滴滴出行 地图感知算法 面经
滴滴出行 地图感知算法 面经
80 0
|
分布式计算 算法 决策智能
一种改进的人工鱼群算法及其应用(Matlab代码实现)
一种改进的人工鱼群算法及其应用(Matlab代码实现)
221 0
|
8月前
|
数据可视化 定位技术 API
Google Earth Engine(GEE) ——土著土地地图数据集
Google Earth Engine(GEE) ——土著土地地图数据集
77 1
|
8月前
|
算法 定位技术
【算法】 用Prolog解决地图着色问题
【算法】 用Prolog解决地图着色问题
113 0

热门文章

最新文章