前端开发者的机器学习平台Pipcook产品介绍

简介: Pipcook 用于机器学习及其工程的 JavaScript 应用程序框架。

为什么选择 Pipcook

以让 JavaScript 工程师在没有任何先决条件的情况下利用机器学习的力量为使命,并以引领前端技术领域走向智能化为愿景。Pipcook将成为机器学习和前端交互交叉领域的 JavaScript 应用程序框架。

我们真正为前端和机器学习应用设计Pipcook的API,并专注于前端领域,从JavaScript工程师的角度进行开发。本着对JavaScript友好的原则,我们将通过机器学习工程推动整个领域向前发展。出于这个原因,我们打开了一个关于 机器学习应用程序 API 的问题,期待您的参与。

什么是 Pipcook

该项目提供的子项目包括机器学习管道框架、管理工具、用于机器学习的 JavaScript 运行时,这些也可以用作与其他项目结合的构建块。

原则

Pipcook是一个以强大原则为指导的开源项目,旨在实现模块化和灵活的用户体验。它对社区开放,以帮助确定其方向。

  • 模块化项目包括一些具有良好定义的功能和可协同工作的 API 的项目。
  • Swappable该项目包含足够的模块来构建 Pipcook 所做的事情,但其模块化架构确保大多数模块可以通过不同的实现进行交换。

观众

Pipcook面向希望:

  • 学习什么是机器学习。
  • 训练他们的模型并为他们服务。
  • 优化自己的模型以获得更好的模型评估结果,例如更高的图像分类精度。

如果您处于上述情况,请通过安装指南尝试。

子项目

Pipcook 管道

它用于表示由 Pipcook 脚本组成的 ML 管道。该层保证了整个系统的稳定性和可扩展性,并采用插件机制支持数据集、训练、验证、部署等丰富的功能。

Pipcook 管道通常由许多脚本组成。通过不同的脚本和配置,最终输出给我们的是一个 NPM 包,里面包含训练好的模型和可以直接使用的 JavaScript 函数。

注意:在Pipcook中,每个pipeline只有一个作用,就是输出你需要的上面训练好的模型。也就是说每个pipeline的最后一个stage必须是训练好的模型的输出,否则这个Pipeline是无效的。

Pipcook 桥接 Python

对于 JavaScript 工程师来说,最困难的部分是生态系统中缺乏成熟的机器学习工具集。在 Pipcook 中,有一个名为 [Boa][ https://github.com/imgcook/boa ]的模块,它通过使用 N-API桥接CPython的接口来提供对 Python 包的访问。

有了它,开发人员可以使用的包,例如numpyscikit-learnjiebatensorflow,或者在Node.js的任何其他Python生态通过JavaScript运行。

快速开始

设置

在您的机器上准备以下内容:

安装程序 版本范围
节点.js >= 12.17
新产品经理 >= 6.14.4

安装用于管理Pipcook项目的命令行工具:

$ npm install -g @pipcook/cli

然后运行一个管道:

$ pipcook 运行 https://cdn.jsdelivr.net/gh/alibaba/pipcook@main/example/pipelines/text-classification-bayes.json

操场

如果您想知道在Pipcook 中可以做什么以及在哪里可以查看您的训练日志和模型,您可以从Pipboard开始:

打开 https://pipboard.imgcook.com

您将在浏览器中看到一个网页提示,主页上有一个 MNIST 展示并在那里播放。

管道

如果你想训练一个模型来自己识别 MNIST 手写数字,你可以试试下面的例子。

名称 描述 在 Colab 中打开
mnist-图像分类 分类 MNIST 图像分类问题的管道。 不适用
数据绑定图像分类 训练图像分类任务的管道示例,即
imgcook数据绑定图片进行分类。
物体检测 用于训练对象检测任务的管道示例,该任务
用于 imgcook 使用的组件识别。
文本贝叶斯分类 使用贝叶斯训练文本分类任务的管道示例 不适用

有关完整列表,请参见此处,运行这些示例既简单又快捷。例如,要进行 MNIST 图像分类,只需运行以下命令即可启动管道:

$ pipcook 运行 https://cdn.jsdelivr.net/gh/alibaba/pipcook@main/example/pipelines/image-classification-mobilenet.json -o 输出

上述管道完成后,您已经在当前output/model目录训练了一个模型,它是一个 tensorflow.js 模型。

社区

钉钉

image.png

或者通过群号搜索:30624012。

在这里下载钉钉(一个多合一的免费沟通和协作平台):English |中文

相关文章
|
1月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
2月前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
108 31
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
4月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
85 6
|
26天前
|
人工智能 智能设计 数据处理
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
306 4
|
3月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
293 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
2月前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
179 3
|
7月前
|
机器学习/深度学习 人工智能 Shell
人工智能平台PAI操作报错合集之在分布式训练过程中遇到报错,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI操作报错合集之任务重启后出现模型拆分报错,该怎么办
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

热门文章

最新文章

  • 1
    【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
  • 2
    【08】flutter完成屏幕适配-重建Android,增加GetX路由,屏幕适配,基础导航栏-多版本SDK以及gradle造成的关于fvm的使用(flutter version manage)-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
  • 3
    【05】flutter完成注册页面完善样式bug-增加自定义可复用组件widgets-严格规划文件和目录结构-规范入口文件-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草央千澈
  • 4
    详解智能编码在前端研发的创新应用
  • 5
    巧用通义灵码,提升前端研发效率
  • 6
    智能编码在前端研发的创新应用
  • 7
    【04】flutter补打包流程的签名过程-APP安卓调试配置-结构化项目目录-完善注册相关页面-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程
  • 8
    【07】flutter完成主页-完成底部菜单栏并且做自定义组件-完整短视频仿抖音上下滑动页面-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草央千澈
  • 9
    抛弃node和vscode,如何用记事本开发出一个完整的vue前端项目
  • 10
    大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡