Building deep retrieval models

简介: In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power.

In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power.
In general, deeper models are capable of learning more complex patterns than shallower models. For example, our user model incorporates user ids and timestamps to model user preferences at a point in time. A shallow model (say, a single embedding layer) may only be able to learn the simplest relationships between those features and movies: a given movie is most popular around the time of its release, and a given user generally prefers horror movies to comedies. To capture more complex relationships, such as user preferences evolving over time, we may need a deeper model with multiple stacked dense layers.

Of course, complex models also have their disadvantages. The first is computational cost, as larger models require both more memory and more computation to fit and serve. The second is the requirement for more data: in general, more training data is needed to take advantage of deeper models. With more parameters, deep models might overfit or even simply memorize the training examples instead of learning a function that can generalize. Finally, training deeper models may be harder, and more care needs to be taken in choosing settings like regularization and learning rate.
Finding a good architecture for a real-world recommender system is a complex art, requiring good intuition and careful hyperparameter tuning. For example, factors such as the depth and width of the model, activation function, learning rate, and optimizer can radically change the performance of the model. Modelling choices are further complicated by the fact that good offline evaluation metrics may not correspond to good online performance, and that the choice of what to optimize for is often more critical than the choice of model itself.
Nevertheless, effort put into building and fine-tuning larger models often pays off. In this tutorial, we will illustrate how to build deep retrieval models using TensorFlow Recommenders. We'll do this by building progressively more complex models to see how this affects model performance.

import os
import tempfile

%matplotlib inline
import matplotlib.pyplot as plt

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds

import tensorflow_recommenders as tfrs

plt.style.use('seaborn-whitegrid')

In this tutorial we will use the models from the featurization tutorial to generate embeddings. Hence we will only be using the user id, timestamp, and movie title features.

ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")

ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])

We also do some housekeeping to prepare feature vocabularies.

timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100)))

max_timestamp = timestamps.max()
min_timestamp = timestamps.min()

timestamp_buckets = np.linspace(
    min_timestamp, max_timestamp, num=1000,
)

unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
    lambda x: x["user_id"]))))

Model definition

Query model

We start with the user model defined in the featurization tutorial as the first layer of our model, tasked with converting raw input examples into feature embeddings.

class UserModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    self.user_embedding = tf.keras.Sequential([
        tf.keras.layers.experimental.preprocessing.StringLookup(
            vocabulary=unique_user_ids, mask_token=None),
        tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
    ])
    self.timestamp_embedding = tf.keras.Sequential([
        tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()),
        tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
    ])
    self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization()

    self.normalized_timestamp.adapt(timestamps)

  def call(self, inputs):
    # Take the input dictionary, pass it through each input layer,
    # and concatenate the result.
    return tf.concat([
        self.user_embedding(inputs["user_id"]),
        self.timestamp_embedding(inputs["timestamp"]),
        self.normalized_timestamp(inputs["timestamp"]),
    ], axis=1)

Defining deeper models will require us to stack mode layers on top of this first input. A progressively narrower stack of layers, separated by an activation function, is a common pattern:

                            +----------------------+
                            |      128 x 64        |
                            +----------------------+
                                       | relu
                          +--------------------------+
                          |        256 x 128         |
                          +--------------------------+
                                       | relu
                        +------------------------------+
                        |          ... x 256           |
                        +------------------------------+

Since the expressive power of deep linear models is no greater than that of shallow linear models, we use ReLU activations for all but the last hidden layer. The final hidden layer does not use any activation function: using an activation function would limit the output space of the final embeddings and might negatively impact the performance of the model. For instance, if ReLUs are used in the projection layer, all components in the output embedding would be non-negative.

We're going to try something similar here. To make experimentation with different depths easy, let's define a model whose depth (and width) is defined by a set of constructor parameters.

class QueryModel(tf.keras.Model):
  """Model for encoding user queries."""

  def __init__(self, layer_sizes):
    """Model for encoding user queries.

    Args:
      layer_sizes:
        A list of integers where the i-th entry represents the number of units
        the i-th layer contains.
    """
    super().__init__()

    # We first use the user model for generating embeddings.
    self.embedding_model = UserModel()

    # Then construct the layers.
    self.dense_layers = tf.keras.Sequential()

    # Use the ReLU activation for all but the last layer.
    for layer_size in layer_sizes[:-1]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))

    # No activation for the last layer.
    for layer_size in layer_sizes[-1:]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size))

  def call(self, inputs):
    feature_embedding = self.embedding_model(inputs)
    return self.dense_layers(feature_embedding)

The layer_sizes parameter gives us the depth and width of the model. We can vary it to experiment with shallower or deeper models.

Candidate model

We can adopt the same approach for the movie model. Again, we start with the MovieModel from the featurization tutorial:

class MovieModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    max_tokens = 10_000

    self.title_embedding = tf.keras.Sequential([
      tf.keras.layers.experimental.preprocessing.StringLookup(
          vocabulary=unique_movie_titles,mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
    ])

    self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
        max_tokens=max_tokens)

    self.title_text_embedding = tf.keras.Sequential([
      self.title_vectorizer,
      tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
      tf.keras.layers.GlobalAveragePooling1D(),
    ])

    self.title_vectorizer.adapt(movies)

  def call(self, titles):
    return tf.concat([
        self.title_embedding(titles),
        self.title_text_embedding(titles),
    ], axis=1)

And expand it with hidden layers:

class CandidateModel(tf.keras.Model):
  """Model for encoding movies."""

  def __init__(self, layer_sizes):
    """Model for encoding movies.

    Args:
      layer_sizes:
        A list of integers where the i-th entry represents the number of units
        the i-th layer contains.
    """
    super().__init__()

    self.embedding_model = MovieModel()

    # Then construct the layers.
    self.dense_layers = tf.keras.Sequential()

    # Use the ReLU activation for all but the last layer.
    for layer_size in layer_sizes[:-1]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))

    # No activation for the last layer.
    for layer_size in layer_sizes[-1:]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size))

  def call(self, inputs):
    feature_embedding = self.embedding_model(inputs)
    return self.dense_layers(feature_embedding)

Combined model

With both QueryModel and CandidateModel defined, we can put together a combined model and implement our loss and metrics logic. To make things simple, we'll enforce that the model structure is the same across the query and candidate models.

class MovielensModel(tfrs.models.Model):

  def __init__(self, layer_sizes):
    super().__init__()
    self.query_model = QueryModel(layer_sizes)
    self.candidate_model = CandidateModel(layer_sizes)
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.candidate_model),
        ),
    )

  def compute_loss(self, features, training=False):
    # We only pass the user id and timestamp features into the query model. This
    # is to ensure that the training inputs would have the same keys as the
    # query inputs. Otherwise the discrepancy in input structure would cause an
    # error when loading the query model after saving it.
    query_embeddings = self.query_model({
        "user_id": features["user_id"],
        "timestamp": features["timestamp"],
    })
    movie_embeddings = self.candidate_model(features["movie_title"])

    return self.task(
        query_embeddings, movie_embeddings, compute_metrics=not training)

Training the model

Prepare the data

We first split the data into a training set and a testing set.

tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

cached_train = train.shuffle(100_000).batch(2048)
cached_test = test.batch(4096).cache()

Shallow model

We're ready to try out our first, shallow, model!

num_epochs = 300

model = MovielensModel([32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

one_layer_history = model.fit(
    cached_train,
    validation_data=cached_test,
    validation_freq=5,
    epochs=num_epochs,
    verbose=0)

accuracy = one_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")

This gives us a top-100 accuracy of around 0.27. We can use this as a reference point for evaluating deeper models.

Deeper model

What about a deeper model with two layers?

model = MovielensModel([64, 32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

two_layer_history = model.fit(
    cached_train,
    validation_data=cached_test,
    validation_freq=5,
    epochs=num_epochs,
    verbose=0)

accuracy = two_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")

The accuracy here is 0.29, quite a bit better than the shallow model.

We can plot the validation accuracy curves to illustrate this:

Even early on in the training, the larger model has a clear and stable lead over the shallow model, suggesting that adding depth helps the model capture more nuanced relationships in the data.
However, even deeper models are not necessarily better. The following model extends the depth to three layers:

model = MovielensModel([128, 64, 32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

three_layer_history = model.fit(
    cached_train,
    validation_data=cached_test,
    validation_freq=5,
    epochs=num_epochs,
    verbose=0)

accuracy = three_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/NLP_recommend/Building%20deep%20retrieval%20models.ipynb

目录
相关文章
|
并行计算 异构计算
CUDA stream利用CUDA流重叠计
CUDA stream利用CUDA流重叠计
614 0
CUDA stream利用CUDA流重叠计
|
7月前
|
消息中间件 JSON 自然语言处理
python多进程日志以及分布式日志的实现方式
python日志在多进程环境下的问题 python日志模块logging支持多线程,但是在多进程下写入日志文件容易出现下面的问题: PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。 也就是日志文件被占用的情况,原因是多个进程的文件handler对日志文件进行操作产生的。
|
算法 API
全新Self-RAG框架亮相,自适应检索增强助力超越ChatGPT与Llama2,提升事实性与引用准确性
全新Self-RAG框架亮相,自适应检索增强助力超越ChatGPT与Llama2,提升事实性与引用准确性
全新Self-RAG框架亮相,自适应检索增强助力超越ChatGPT与Llama2,提升事实性与引用准确性
|
存储 安全
atomic_int
atomic_int
386 0
|
人工智能 算法 数据挖掘
期望最大化(EM)算法:从理论到实战全解析
期望最大化(EM)算法:从理论到实战全解析
402 0
|
机器学习/深度学习 测试技术
LLM-Blender:大语言模型也可以进行集成学习
最近在看arxiv的时候发现了一个有意思的框架:LLM-Blender,它可以使用Ensemble 的方法来对大语言模型进行集成。
348 0
|
机器学习/深度学习 缓存 自然语言处理
更加灵活、经济、高效的训练——新一代搜推广稀疏大模型训练范式GBA
近日,阿里巴巴在国际顶级机器学习会议NeurIPS 2022上发表了新的自研训练模式 Gloabl Batch gradients Aggregation (GBA,论文链接:https://arxiv.org/abs/2205.11048),由阿里妈妈事业部搜索广告团队和智能引擎事业部XDL训练引擎团队联合探索和研发。GBA的提出对阿里巴巴搜推广稀疏模型的训练范式带来了架构性的跨越式升级。本文将从GBA的设计思路、收敛性分析及工程实现等方面展开介绍,欢迎阅读交流。
更加灵活、经济、高效的训练——新一代搜推广稀疏大模型训练范式GBA
|
Java 测试技术 Go
|
异构计算 Python
可以直接将GPU上面的变量打印出来吗,还是说需要先放在cpu上面才能打印
在这个示例中,我们首先定义了一个张量对象x,并将其放在GPU设备上。然后,我们使用.cpu()方法将其从GPU移动到CPU,并使用.detach()方法分离出其计算图依赖关系,并将其转换为NumPy数组。最后,我们使用Python内置的print()函数将其打印出来。
460 0
|
并行计算
CUDA stream默认流与非默认流
CUDA stream默认流与非默认流
412 0
CUDA stream默认流与非默认流

热门文章

最新文章