TensorFlow 2 quickstart for beginners

简介: This short introduction uses Keras to:1. Build a neural network that classifies images.2. Train this neural network.3. And, finally, evaluate the accuracy of the model.

This short introduction uses Keras to:

  1. Build a neural network that classifies images.
  2. Train this neural network.
  3. And, finally, evaluate the accuracy of the model.
import tensorflow as tf

Load and prepare the MNIST dataset. Convert the samples from integers to floating-point numbers:

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Build the tf.keras.Sequential model by stacking layers. Choose an optimizer and loss function for training:

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10)
])

For each example the model returns a vector of "logits" or "log-odds" scores, one for each class.

predictions = model(x_train[:1]).numpy()
predictions

The tf.nn.softmax function converts these logits to "probabilities" for each class:

tf.nn.softmax(predictions).numpy()

Note: It is possible to bake this tf.nn.softmax in as the activation function for the last layer of the network. While this can make the model output more directly interpretable, this approach is discouraged as it's impossible to provide an exact and numerically stable loss calculation for all models when using a softmax output.

The losses.SparseCategoricalCrossentropy loss takes a vector of logits and a True index and returns a scalar loss for each example.

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

This loss is equal to the negative log probability of the true class: It is zero if the model is sure of the correct class.

This untrained model gives probabilities close to random (1/10 for each class), so the initial loss should be close to -tf.math.log(1/10) ~= 2.3

loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer='adam',
              loss=loss_fn,
              metrics=['accuracy'])

The Model.fit method adjusts the model parameters to minimize the loss:

model.fit(x_train, y_train, epochs=5)

The Model.evaluate method checks the models performance, usually on a "Validation-set" or "Test-set".

model.evaluate(x_test,  y_test, verbose=2)

The image classifier is now trained to ~98% accuracy on this dataset. To learn more, read the TensorFlow tutorials.

If you want your model to return a probability, you can wrap the trained model, and attach the softmax to it:

probability_model = tf.keras.Sequential([
  model,
  tf.keras.layers.Softmax()
])
probability_model(x_test[:5])

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/CV_Classification/TensorFlow%202%20quickstart%20for%20beginners.ipynb

目录
相关文章
|
机器学习/深度学习 TensorFlow API
tensorflow详解
@[TOC](目录) TensorFlow 是一个由 Google Brain 团队开发的高级开源机器学习框架,旨在为开发者提供一种灵活、高效的方式来构建和训练神经网络模型,以及进行各种机器学习任务,如文本分析、图像识别、自然语言处理等。TensorFlow 提供了丰富的 API 和工具,使开发者可以轻松地构建、训练和部署深度学习模型 # 1. 基本介绍 TensorFlow 是一个开源的深度学习框架,由 Google Brain 团队开发和维护。它可以用于构建各种类型的神经网络,包括卷积神经网络、循环神经网络、生成对抗网络等。TensorFlow 提供了丰富的 API 和工具,使得开发者可以
254 0
|
2月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
45 2
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow2 AutoGraph
【8月更文挑战第18天】TensorFlow2 AutoGraph。
50 8
|
7月前
|
Kubernetes TensorFlow 算法框架/工具
精通 TensorFlow 1.x:11~15(1)
精通 TensorFlow 1.x:11~15(1)
65 0
|
7月前
|
机器学习/深度学习 自然语言处理 算法
精通 TensorFlow 1.x:6~10(2)
精通 TensorFlow 1.x:6~10(2)
80 0
|
7月前
|
TensorFlow API 算法框架/工具
精通 TensorFlow 1.x:1~5(1)
精通 TensorFlow 1.x:1~5
114 0
|
7月前
|
TensorFlow API 算法框架/工具
精通 TensorFlow 1.x:16~19
精通 TensorFlow 1.x:16~19
74 0
|
机器学习/深度学习 算法 Java
TensorFlow Lite介绍
TensorFlow Lite是为了解决TensorFlow在移动平台和嵌入式端过于臃肿而定制开发的轻量级解决方案,是与TensorFlow完全独立的两个项目,与TensorFlow基本没有代码共享。TensorFlow本身是为桌面和服务器端设计开发的,没有为ARM移动平台定制优化,因此如果直接用在移动平台或者嵌入式端会“水土不服”。
507 0
|
TensorFlow API 算法框架/工具
TensorFlow 2 quickstart for experts
TensorFlow 2 quickstart for experts
186 0
|
TensorFlow 算法框架/工具 Python
TensorFlow Recommenders: Quickstart
In this tutorial, we build a simple matrix factorization model using the MovieLens 100K dataset with TFRS. We can use this model to recommend movies for a given user.
248 0