搜索账号 排行榜客户端 癌症研究中大数据能做的五件事

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

1. 帮助指导使用已通过的癌症药物


虽然临床试验为医生们提供了许多药物如何发挥作用的有用信息,但是大概只有2%的癌症患者参与了临床试验。 事实上,每天都有成千上万的患者接受诊断和治疗。这意味着其实我们可以从中获得大量的重要数据,来帮助医生与病人在面对不同治疗方案及其可能的结果时做出更好的选择。


美国临床肿瘤学会ASCO发起建立一个数据库:CancerLinQ,旨在获取这些数据。它能将数据提供给医生们, 为他们提供实时的治疗建议。美国基因泰克公司(Genentech)的科学家和医生们都对能帮助ASCO开发一个完善的CancerLinQ系统感到兴奋。


2. 决定每位患者的预后治疗


了解患者的预后,可以帮助医疗团队决定对患者癌症的治疗强度,以及在肿瘤消失后需采取的措施。大数据正在借助分析从大量不同患者搜集过来的海量信息,来预测长期结果。例如,医生可以使用这些信息来决定哪些患者应该接受进一步治疗,哪些患者,由于他们的癌症不太可能复发而避免不必要的治疗。


3. 帮助药物开发发掘潜在的新靶点


对大量肿瘤DNA进行测序可以帮助研究人员了解一些与癌症相关的基因变化。科学家利用这一点帮助测试潜在的新药物,这些药物能靶定到某些与肿瘤生长相关的基因变化或驱动因子。大数据可以从临床前试验中获得,并用来帮助药物或药物组合的选择,以放到人类临床试验的研究中。


4. 解决大的公共卫生问题


流行病学研究包括癌症在内的人类疾病的起因及模式。在大数据时代之前,人们发现吸烟是导致绝大多数肺癌的因素。现在,大数据可以帮助解决癌症研究中更大的问题。新时代的流行病学借助于海量的住院记录及基因组数据,深入研究不同人群中的不同癌症。


5. 允许病人直接参与进来


癌症患者现在可以通过提供基因,医疗记录及治疗效果等数据,直接参与癌症研究。这些信息用于建立大型的研究数据库。


原文发布时间为:2014-09-27

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
23天前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
645 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
295 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
机器学习/深度学习 自然语言处理 数据可视化
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
本文探讨了基于Python大数据技术对京东产品评论进行情感分析的研究,涵盖了文本预处理、情感分类、主题建模等步骤,并运用了snwonlp情感分析和LDA主题分析方法,旨在帮助电商企业和消费者做出更明智的决策。
513 1
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
236 2
|
运维 监控 Java
在大数据场景下,Elasticsearch作为分布式搜索与分析引擎,因其扩展性和易用性成为全文检索首选。
【7月更文挑战第1天】在大数据场景下,Elasticsearch作为分布式搜索与分析引擎,因其扩展性和易用性成为全文检索首选。本文讲解如何在Java中集成Elasticsearch,包括安装配置、使用RestHighLevelClient连接、创建索引和文档操作,以及全文检索查询。此外,还涉及高级查询、性能优化和故障排查,帮助开发者高效处理非结构化数据。
198 0
|
16天前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
86 14
|
2月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
86 0

热门文章

最新文章