如何通过Graph+AI的方法打造高精度风控模型

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 图数据库的应用可以在高度关联的数据中挖掘数据源间的深度关联关系,通过理解和分析图将信息升维,进而帮助企业获取洞察,这将成为企业未来核心的竞争力。

作者:杨哲超




《Gartner 2021十大数据和分析趋势》中指出,图技术使一切产生关联,预测到2025年图技术在数据和分析创新中的占比将从2021年的10%上升到80%。该技术将促进整个企业机构的快速决策。从金融行业角度看,在中国人民银行印发《金融科技(FinTech) 发展规划(2019—2021年)》 等政策驱动下,通过构建金融知识图谱基于多维数据源做决策,可以有效带动金融机构降本增效。


图数据库GDB是阿里云自主研发的图数据库产品,经历阿里巴巴集团内丰富的应用场景打磨,具备了丰富的最佳实践。图数据库GDB在2020年进入Forrester图数据平台竞争者象限,也是国内图数据库产品首次入选。阿里云图数据库GDB在满足高可靠性、高性能的同时,也兼顾了低成本的特性,产品使用、运维成本仅为国外图数据库产品的40%。我们将自动特征工程、自动机器学习等AI能力下沉到图数据库引擎中,形成阿里云图智能平台,让整个图模型的构建、分析、发布过程自然连贯。阿里云图智能平台在金融行业已经帮助银行、保险等领域客户构建了金融风控、商品推荐、循环担保检测、异常指标监控、违规团伙挖掘等场景,通过穿透行业应用场景,帮助客户基于多维数据做出精准决策。


1.jpg


传统的金融风控模型,能够汇集各个数据源的属性特征信息,但是比较难挖掘数据源之间的深度关联关系。要深度并且快速的挖掘海量数据的关联特征,则会面临非常大的技术挑战。图技术的意义在于将信息升维,而机器学习技术的意义在于对数据规律进行总结。通过图表示学习技术,提取金融知识图谱中的拓扑信息特征,并通过图自动特征工程模块,自动构建特征作为风控模型的输入条件参与模型训练。通过自动机器学习模块,帮助金融机构挑选、调试、集成各个机器学习模型,实现更高精度的风控模型。


华瑞银行于2020年正式引入阿里云图数据库GDB,通过对数据资产进行深度关联关系分析,进一步提升风险识别能力。通过打造一套企业级图分析平台,实现了对智慧供应链、航旅消费贷款等业务的智能风险管控。通过阿里云图数据库GDB集成的自动机器学习组件,华瑞银行大幅降低了风控模型研发周期,并在截止目前的实践中检测到6个诈骗团伙,有效防控了业务风险。


2.png


图数据库的应用可以在高度关联的数据中挖掘数据源间的深度关联关系,通过理解和分析图将信息升维,进而帮助企业获取洞察,这将成为企业未来核心的竞争力。我们也会不断完善我们的图数据库产品和服务,探求用户真正的需求,以帮助更多企业和开发者获得洞察力和竞争优势。



直播回顾:https://yqh.aliyun.com/live/detail/23882

相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
目录
相关文章
|
2天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
35 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
11天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
64 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
13天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
56 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
13天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
55 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
7天前
|
人工智能 自然语言处理 物联网
AI Safeguard联合 CMU,斯坦福提出端侧多模态小模型
随着人工智能的快速发展,多模态大模型(MLLMs)在计算机视觉、自然语言处理和多模态任务中扮演着重要角色。
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
56 10
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
6天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
11天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建