Vineyard 加入 CNCF Sandbox,将继续瞄准云原生大数据分析领域

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
应用实时监控服务-应用监控,每月50GB免费额度
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
简介: Vineyard 是一个专为云原生环境下大数据分析场景中端到端工作流提供内存数据共享的分布式引擎,我们很高兴宣布 Vineyard 在 2021 年 4 月 27 日被云原生基金会(CNCF)TOC 接受为沙箱(Sandbox)项目。

头图.png

作者 | Vineyard 团队
来源 | 阿里巴巴云原生公众号

Vineyard 是一个专为云原生环境下大数据分析场景中端到端工作流提供内存数据共享的分布式引擎,我们很高兴宣布 Vineyard 在 2021 年 4 月 27 日被云原生基金会(CNCF)TOC 接受为沙箱(Sandbox)项目。

Vineyard 项目开源地址:
https://github.com/alibaba/v6d

项目介绍

现有的大数据分析场景中,对于端到端任务,不同的子任务之间通常使用例如 HDFS、S3、OSS 这样的分布式文件系统或对象存储系统,来共享任务之间的中间数据,这种方式在运行效率和研发效率上存在诸多问题,以下图所示的一个风控作业工作流为例:

1.jpg

  1. 工作流中不同任务之间为了共享中间数据,前一个任务将结果写入文件系统,完成之后,后一个再将文件读出作为输入,这个过程带来了额外的序列化及反序列化、内存拷贝、以及网络、IO 的开销,我们从历史任务中观察到有超过 60% 的任务为此花费了 40% 以上的执行时间。
  2. 对于生产环境,为了高效地解决某一个特定范式的问题往往会引入一个新系统(例如分布式图计算),但这样的系统往往难以直接与工作流中的其他系统无缝衔接,需要很多重复的 IO、数据格式转换和适配的研发工作。
  3. 使用外部文件系统共享数据给工作流带来了额外的中断,因为往往只有当一个任务完全写完所有结果,下一个任务才能开始读取和计算,这使得跨任务的流水线并行无法被应用。
  4. 现有的分布式文件系统在共享中间数据时,特别是在云原生环境下,并没有很好的处理分布式数据的位置问题,造成网络开销的浪费,从而降低端到端执行效率。

为了解决现有大数据分析工作流中存在的上述问题,我们设计和实现了分布式内存数据共享引擎 Vineyard。

2.jpg

Vineyard 从以下三个角度来应对上述几个问题:

  1. 为了使端到端工作流中任务之间的数据共享更加高效,Vineyard 通过内存映射的方式,支持系统间零拷贝的数据共享,省去了额外的 IO 开销。
  2. 为了简化新计算引擎接入现有系统所需要的适配和开发,Vineyard 对常见的数据类型,提供了开箱即用的抽象,例如 Tensor、DataFrame、Graph,等等,从而不同计算引擎之间共享中间结果不再需要额外的序列化和反序列。同时,Vineyard 将 IO、数据迁移、快照等可复用的组件以插件的形式实现,使其能够很灵活地按需注册到计算引擎中去,降低与计算引擎本身无关的开发成本。
  3. Vineyard 提供一系列 operators,来实现更高效灵活的数据共享。例如 Pipeline operator 实现了跨任务的流水线并行,使得后续任务可以随着前序任务输出的产生,同时进行计算,提高了端到端整体效率。
  4. Vineyard 与 Kubernetes 集成,通过 Scheduler Plugin,让任务的调度能够感知所需要的数据的局部性,在 Kubernetes 让单个任务的 Pod 尽可能地调度到与 Pod 所需的输入数据对其的机器上,来减小数据迁移需要的网络开销,提升端到端性能。

在初步的对比实验中,相比于使用 HDFS 来共享中间数据,对于评测任务,Vineyard 能够大幅降低用于交换中间结果引入的额外开销,对于整个工作流的端到端时间有 1.34 倍的提升。

核心功能

接下来从 Vineyard 核心的设计与实现,以及 Vineyard 如何助力云原生环境中大数据分析任务两个方面来介绍 Vineyard 的核心功能。

1. 分布式内存数据共享

Vineyard 将内存中的数据表示为 Object。Object 可以是 Local 的,也可以是 Global 的,以分布式执行引擎 Mars 和 Dask 为例,一个 DataFrame 往往被拆分成很多个 Chunk 以利用多台机器的计算能力,每台机器上有多个 Chunk,这些 Chunk 是 Vineyard 中的 LocalObject,这些 Chunk 一起构成了一个全局的视图,即 GlobalDataFrame。这个 GlobalDataFrame 能够直接共享给其他计算引擎,如 GraphScope,作为图数据的输入。有了这些数据类型的抽象,Vineyard 上的不同计算引擎之间就可以无缝地共享中间结果,将一个任务的输出直接用作下一个任务的输出。

更具体地,Vineyard 中又是如果表达一个特定类型的 Object,使之能够很容易地适配到不同的计算引擎中去呢?这得益于 Vineyard 在 Object 的表示上提供的灵活性。Vineyard 中,一个 Object 包括两个部分,Metadata,以及一组 Blob。Blob 中存储着实际的数据,而 Metadata 则用于解释这些 Blob 的语义。例如对于 Tensor,Blob 是一段连续内存,存储着 Tensor 中所有的元素,而 Metadata 中记录了 Tensor 的类型、形状、以及行主序还是列主序等属性。在 Python 中,这个 Object 可以被解释为一个 Numpy 的 NDArray,而在 C++ 中,这个 Object 可以被解释为一个 xtensor 中的 tensor。这两种不同编程语言的 SDK 中,共享这个 Tensor 不会带来额外的 IO、拷贝、序列化/反序列化、以及类型转换的开销。

同时,Vineyard 中的 Metadata 是可嵌套的,这使得我们通过很容易地将任何复杂的数据类型描述为 Vineyard 中的 Object,不会限制计算引擎的表达能力。以 GlobalDataFrame 为例,见下图中 Metadata 的结构。

3.png

2. 云原生环境中数据与任务的协同调度

对于一个真实部署的大数据分析流水线,仅仅有任务之间的数据共享是远远不够的。在云环境中,一个端到端流水线中包含的多个子任务在被 Kubernetes 调度时仅仅考虑了需要的资源约束,连续的两个任务的 co-locate 无法保证,在两个任务之间共享中间结果时仍然有数据迁移引入的网络开销,如下图,在运行 Task B 时,因为两个任务的 Pod 没有对齐,数据分片 A3、A4 需要被迁移到 Pod 所在的 Vineyard 实例上。

4.png

对此,Vineyard 通过 CRD 将集群中的数据(Vineyard Objects)表示为可观测的资源,并基于 Kubernetes 的 Scheduler Framework 设计和实现了一个考虑数据局部性的调度器插件。当前一个任务 Task A 完成后,从结果对象的 Metadata 中,调度器插件可以知道所有分片的位置,在启动下一个任务时,调度器给数据所在的节点(图中的 Node 1、Node 2)更高的优先级,使任务 Task B 也尽可能地被调度到对应的节点上,从而省去了数据迁移引入的额外开销,来改善端到端的性能。

快速上手

Vineyard 集成了 Helm 以方便用户安装和部署:

helm repo add vineyard https://vineyard.oss-ap-southeast-1.aliyuncs.com/charts/
helm install vineyard vineyard/vineyard

安装之后,系统中会部署一个 Vineyard DaemonSet,并暴露一个 UNIX domain socket 用于与应用的任务 Pod 之间的共享内存和 IPC 通信。

此外,还可以参考 Vineyard 的演示视频:
https://www.youtube.com/watch?v=vPbF1l5nwwQ&list=PLj6h78yzYM2NoiNaLVZxr-ERc1ifKP7n6&t=585

未来展望

Vineyard 已经作为分布式科学计算引擎 Mars 和一站式图计算系统 GraphScope 的存储引擎,Vineyard 助力大数据分析任务离不开与云原生社区的紧密互动,未来Vineyard 会进一步地完善与社区其他项目如 Kubeflow、Fluid 等的集成,助力更多云上大数据分析任务。

Vineyard 将继续与社区同行,支持关注社区的反馈,致力于推动云原生技术在大数据分析领域的生态建设和应用。欢迎大家关注 Vineyard 项目,加入 Vineyard 社区并参与项目的共建与落地!

2021 阿里云开发者大会重磅开启!

文末 banner.png

数字时代,如何更好地利用云的能力?什么是新型、便捷的开发模式?如何让开发者更高效地构建应用?科技赋能社会,技术推动变革,拓展开发者的能量边界,一切,因云而不同。点击立即报名活动2021 阿里云开发者大会将给你答案。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
60 4
|
10天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
45 2
|
1月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
67 5
|
1天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
27 5
|
13天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
63 14
|
12天前
|
Kubernetes Cloud Native Ubuntu
庆祝 .NET 9 正式版发布与 Dapr 从 CNCF 毕业:构建高效云原生应用的最佳实践
2024年11月13日,.NET 9 正式版发布,Dapr 从 CNCF 毕业,标志着云原生技术的成熟。本文介绍如何使用 .NET 9 Aspire、Dapr 1.14.4、Kubernetes 1.31.0/Containerd 1.7.14、Ubuntu Server 24.04 LTS 和 Podman 5.3.0-rc3 构建高效、可靠的云原生应用。涵盖环境准备、应用开发、Dapr 集成、容器化和 Kubernetes 部署等内容。
39 5
|
18天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
62 2
|
19天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
19天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
22天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
下一篇
无影云桌面