新零售行业优质解决方案分享【智能语音点餐机解决方案】

简介: 传统的餐厅通过点餐大屏的方式来降低高峰时段点餐线的工作压力,但是通过触摸屏的方式,交互流程比较复杂,客户体验较差。基于阿里云的智能语音交互技术,解决在嘈杂环境下的语音点餐,并可以快速识别带口音的普通话,无需再通过触摸选址方式进行点餐。阿里云通过软硬件一体化方案,实现更好的餐厅点餐体验。

1、智能语音点餐机解决方案方案架构

1.png

架构特点:

基于达摩院特有的多模态交互技术,通过摄像头、麦克风阵列等实现了嘈杂环境下免唤醒词语音有效采集;结合客户实际点餐场景,构建智能语音交互知识库,并实现长语句、流式语音交互;加入小票打印机、二维码扫码窗的硬件配件,满足特殊业务场景要求;硬件整体交付,并和客户现有的商品系统、POS系统、支付系统进行集集成,实现端到端业务闭环。


2、智能语音点餐机解决方案方案优势

智能语音点餐机

支持在嘈杂环境下的语音点餐;免唤醒词,超长口语理解;可以快速识别带口音的普通话。


3、相关产品推荐

1)专有网络 VPC

基于阿里云构建出一个隔离的网络环境。

2)云服务器 ECS

弹性可伸缩计算服务,帮助降低 IT 成本,提升运维效率。

3)云数据库RDS

广泛应用于各类应用场景的关系型数据库。

4)对象存储 OSS

海量、安全、低成本、高可靠的云存储服务。


欢迎扫码加入阿里云新零售行业学习交流钉钉群

新零售.jpg

加入钉钉群可享有以下权益↓

新零售行业咨询.jpg




目录
相关文章
|
1天前
|
人工智能 搜索推荐 Serverless
打造智能购物新体验:主动式智能导购AI助手解决方案评测
阿里云推出的《主动式智能导购AI助手构建》解决方案,基于百炼大模型和函数计算,采用Multi-Agent架构,提供个性化、智能化的购物体验。系统具备主动交互、精准推荐、自动化架构等亮点,支持快速部署和生产环境应用。评测结果显示,该方案在功能效果和架构设计上表现出色,但仍需优化文档和技术细节。欢迎参加官方评测活动... 详细评测及参与方式请参考:[链接](https://developer.aliyun.com/topic/build-an-ai-shopping-assistant?spm=a2c6h.12873639.article-detail.17.13902d93dZhiyK)。
17 1
打造智能购物新体验:主动式智能导购AI助手解决方案评测
|
8天前
|
人工智能 Serverless API
《智能导购 AI 助手构建》解决方案评测:极具吸引力的产品,亟待完善的教程文档
《智能导购 AI 助手构建》解决方案评测:极具吸引力的产品,亟待完善的教程文档
68 8
《智能导购 AI 助手构建》解决方案评测:极具吸引力的产品,亟待完善的教程文档
|
11天前
|
人工智能 数据库连接 API
在部署《主动式智能导购 AI 助手构建》解决方案的过程中,整体体验还是相对顺畅的,但确实遇到了一些问题,文档提供的引导也有所不足,以下是详细的体验评估
在部署《主动式智能导购 AI 助手构建》解决方案的过程中,整体体验还是相对顺畅的,但确实遇到了一些问题,文档提供的引导也有所不足,以下是详细的体验评估
|
14天前
|
人工智能 算法 搜索推荐
《主动式智能导购AI助手构建》解决方案评测
《主动式智能导购AI助手构建》解决方案评测
42 18
|
10天前
|
人工智能 安全 前端开发
《主动式智能导购 AI 助手构建》解决方案评测
在部署《主动式智能导购 AI 助手构建》解决方案时,需关注以下四方面: 1. **引导与文档支持**:官方应提供细致、易懂的引导步骤,涵盖环境搭建、模块配置及常见问题解答。遇到错误及时截图反馈。 2. **原理与架构理解**:深入探究智能导购的工作原理和系统架构,从前端到后端各层运作机制,明确模块职责与扩展性。 3. **关键技术洞察**:理解百炼大模型和函数计算的应用,确保其适配场景并高效运行,通过截图反馈技术难题。 4. **生产环境评估**:评估方案在实际业务中的适用性,如安全防护和数据接入指导,确保高并发下的稳定性和全面性。 认真评测这些要点,助力方案持续优化。
52 11
|
13天前
|
人工智能 自然语言处理 算法
主动式智能导购 AI 助手解决方案实践与测评
主动式智能导购 AI 助手解决方案实践与测评
|
18天前
|
消息中间件 人工智能 搜索推荐
《主动式智能导购AI助手构建》解决方案评测
一文带你了解《主动式智能导购AI助手构建》解决方案的优与劣
90 16
|
14天前
|
人工智能 算法 搜索推荐
《主动式智能导购AI助手构建》解决方案用户评测
《主动式智能导购AI助手构建》提供了详尽的文档支持,涵盖环境准备、配置项设置等,配有图表和实例代码,适合新手上手。部署中遇到环境变量设置和网络连接问题,通过官方文档与技术支持解决。建议增加FAQ内容及错误日志说明。该方案采用Multi-Agent架构,结合百炼大模型和函数计算,实现精准推荐和高效响应。生产环境部署指导基本满足需求,但需加强异常处理指导。整体而言,此解决方案创新实用,推动电商领域发展。
|
16天前
|
Serverless 决策智能 UED
构建全天候自动化智能导购助手:从部署者的视角审视Multi-Agent架构解决方案
在构建基于多代理系统(Multi-Agent System, MAS)的智能导购助手过程中,作为部署者,我体验到了从初步接触到深入理解再到实际应用的一系列步骤。整个部署过程得到了充分的引导和支持,文档详尽全面,使得部署顺利完成,未遇到明显的报错或异常情况。尽管初次尝试时对某些复杂配置环节需反复确认,但整体流程顺畅。
|
21天前
|
人工智能 前端开发 Serverless
主动式智能导购 AI 助手构建解决方案深度评测
《主动式智能导购 AI 助手构建》解决方案通过 Multi-Agent 架构,结合百炼大模型和函数计算,实现了精准的商品推荐。部署流程清晰,但在数据类型选择和配置优化方面存在不足。方案在生产环境应用中提供了基础指导,但仍需完善前端开发指南和数据管理机制,以更好地满足企业需求。

热门文章

最新文章