未来人工智能在物流和运输中的作用

简介: 虽然AI当前是一个流行的技术流行语,但它仅对解决实际的业务问题有用。评估你希望基于AI的系统要解决的问题,将其纳入你的业务目标,并使用适当的度量标准来衡量效率。

image.png

随着物流和货运组织变得更加数字化,企业将能够收集围绕其客户、供应链、交付、车队、驾驶员等的越来越多的数据。领先的物流组织已经在运输中利用人工智能(AI)。尽管许多企业目前正在收集数据,并且将来只会继续增加,但当前仍未充分利用这些数据。

使用预测分析进行路线规划
借助AI的强大功能,企业可以进行高级路线规划,从而以传统路线规划难以或无法实现的方式优化多个实际因素。

运输中的传统路线规划因素通常只能包含一些因素,而这些因素仍然是非常初级的基于规则的因素。不过,传统方式不能一蹴而就。适应新技术的整个过程需要时间和技能。

为了使用AI进行有效的路线规划,企业需要考虑多种因素。除了主观因素(例如交付人员的本地知识和其他偏好)外,因素还包括要交付的类型、客户偏好、交通方式、当地道路法规以及路线变化行为。

借助预测分析,由AI驱动的系统可以优化路线规划的实际因素,从而降低交付成本,缩短交付时间,降低运输成本并提高资产利用率。预测分析使用数据、统计算法和机器学习来基于历史数据确定未来结果的可能性。

利用AI进行物流和运输的好处
未来,基于AI的系统将帮助释放企业数据的真正潜力。这将改善客户体验、改善车队管理、加快交货速度、降低安全事故,并提高整体业务利润率。人工智能为物流运输生态系统中的所有利益相关者带来了双赢的局面,但需要一定的精力和投资来构建和维护。

对AI的建议
与AI一样重要,但AI和数据工程是被低估的组成部分。数据工程是数据科学的一个方面,专注于数据收集和分析的实际应用。在踏上AI之路之前,请问问自己,你是否正在收集有关业务运营的关键数据?数据是否有效地存储、组织并易于访问?

归根结底,虽然AI当前是一个流行的技术流行语,但它仅对解决实际的业务问题有用。评估你希望基于AI的系统要解决的问题,将其纳入你的业务目标,并使用适当的度量标准来衡量效率。


本文转自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
在线免费体验百种AI能力:【点此跳转】
机器智能技术结尾二维码.png

目录
相关文章
|
人工智能 算法 调度
《经典算法与人工智能在外卖物流调度中的应用》电子版地址
经典算法与人工智能在外卖物流调度中的应用
95 0
《经典算法与人工智能在外卖物流调度中的应用》电子版地址
|
人工智能 自然语言处理 供应链
人工智能在物流领域的应用
根据麦肯锡的研究,物流行业主要将人工智能用于4个业务功能,即服务运营,产品和服务开发,营销和销售以及供应链管理。这四个业务部门覆盖了物流中87%的人工智能采用率。麦肯锡估计,通过将人工智能引入其流程,物流公司每年将产生1.3-2万亿美元的经济价值。
604 0
人工智能在物流领域的应用
|
机器学习/深度学习 传感器 存储
运输和物流行业人工智能和自动化的用例
如今,全球一些国家和地区的运输和物流行业的业务受到了疫情的严重影响。为了防止冠状病毒传播,一些国家和地区不得不发布出行禁令。然而事实证明,采用人工智能和自动化技术在疫情期间能够为运输和物流行业提供帮助,从而使物流和运输行业得以创新,并协助经济得以复苏。
179 0
|
机器学习/深度学习 人工智能 算法
|
4天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
5天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
4天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
27 3
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
32 2