函数计算助力语雀构建稳定且安全的业务架构

简介: 语雀是一个专业的云端知识库,用于团队的文档协作。现在已是阿里员工进行文档编写和知识沉淀的标配,并于 2018 年开始对外提供服务。

客户介绍

语雀是一个专业的云端知识库,用于团队的文档协作。现在已是阿里员工进行文档编写和知识沉淀的标配,并于 2018 年开始对外提供服务。

客户痛点

语雀是一个复杂的 Web 应用,也是一个典型的数据密集型应用(Data-Intensive Application),背后依赖了大量的数据库等云服务。语雀服务端是 Node.js 技术栈。当提到 Node 的时候,可能立刻就会有几个词浮现在我们脑海之中:单线程(single-threaded)、非阻塞(non-blocking)、异步(asynchronously programming),这些特性一方面非常的适合于构建可扩展的网络应用,用来实现 Web 服务这类 I/O 密集型的应用,另一方面它也是大家一直对 Node 诟病的地方,对 CPU 密集型的场景不够友好,一旦有任何阻塞进程的方法被执行,整个进程就被阻塞。

像语雀这样用 Node 实现整个服务端逻辑的应用,很难保证不会出现一些场景可能会消耗大量 CPU 甚至是死循环阻塞进程的,以 markdown 转换举例,由于用户的输入无法穷举,总有各种可能让转换代码进入到一个低效甚至是死循环的场景之中。在 Node 刚出世的年代,很难给这些问题找到完美的解决办法,而即便是 Java 等基于线程并发模型的语言,在遇到这样的场景也很头痛,毕竟 CPU 对于 Web 应用来说都是非常重要的资源。而随着基础设置越来越完善,当函数计算出现时,Node 最大的短板看起来有了一个比较完美的解决方案。

解决方案

“把函数计算引入之后,我们可以将那些 CPU 密集型、存在不稳定因素的操作统统放到函数计算服务中去执行,而我们的主服务再次回归到了 I/O 密集型应用模型,又可以愉快的享受 Node 给我们带来的高效研发福利了!”语雀产品技术负责人不四表示。

“以语雀中遇到的一个实际场景来举例,用户传入了一些 HTML 或者 Markdown 格式的文档内容,我们需要将其转换成为语雀自己的文档格式。在绝大部分情况下,解析用户输入的内容都很快,然而依然存在某些无法预料到的场景会触发解析器的 bug 而导致死循环的出现,甚至我们不太敢升级 Markdown 解析库和相关插件以免引入更多的问题。但是随着函数计算的引入,我们将这个消耗 CPU 的转换逻辑放到函数计算上,语雀的主服务稳定性不会再被影响。”
yq1.png

除了帮助 Web 系统分担一些 CPU 密集型操作以外,函数计算还能做什么呢?

语雀支持使用各种代码形式来绘图,包括 Plantuml、公式、Mermaid,还有一些将文档导出成 PDF、图片等功能。这些场景有两个特点:
1、他们依赖于一些复杂的应用软件,例如 Puppeteer、Graphviz 等;
2、可能需要执行用户输入的内容;

支持这类场景看似简单,通过 process.exec 子进程调用一下就搞定了。但是当我们想把它做成一个稳定的对外服务时,问题就出现了。这些复杂的应用软件可能从设计上并没有考虑要长期运行,长期运行时的内存占用、稳定性可能会有一些问题,同时在被大并发调用时,对 CPU 的压力非常大。再加上有些场景需要运行用户输入的代码,攻击者通过构建恶意输入,可以在服务器上运行攻击代码,非常危险。

在没有引入函数计算之前,语雀为了支持这些功能,尽管单独分配了一个任务集群,在上面运行这些三方服务,接受主服务的请求来避免影响主服务的稳定性。但是为了解决上面提到的一系列问题还需要付出很大的成本:
1、需要维持一个不小的任务集群,尽管可能大部分时间都用不上那么多资源。
2、需要定时对三方应用软件进行重启,避免长时间运行带来的内存泄露,即便如此有些特殊请求也会造成第三方软件的不稳定。
3、对用户的输入进行检测和过滤,防止黑客恶意攻击,而黑客的攻击代码很难完全防住,安全风险依旧很大。
yq2.png

最后语雀将所有的第三方服务都分别打包在函数中,将这个任务集群上的功能都拆分成了一系列的函数放到了函数计算上。通过函数计算的特点一下解决了上面的所有问题:
1、函数计算的计费模式是按照代码实际运行的 CPU 时间计费,不需要长期维护一个任务集群了。
2、函数计算上的函数运行时尽管会有一些常驻函数的优化,但是基本不用考虑长期运行带来的一系列问题,且每次调用之间都相互独立,不会互相影响。
3、用户的输入代码是运行在一个沙箱容器中,即便不对用户输入做任何过滤,恶意攻击者也拿不到任何敏感信息,同时也无法进入内部网络执行代码,更加安全。
yq3.png

除了上面提到的这些功能之外,语雀最近还使用 OSS + 函数计算替换了之前使用的阿里云视频点播服务来进行视频和音频的转码。

由于浏览器可以直接支持播放的音视频格式并不多,大量用户上传的视频想要能够直接在语雀上进行播放需要对它们进行转码,业界一般都是通过 FFmpeg 来对音视频进行转码的。转码服务也是一个典型的 CPU 密集型场景,如果要自己搭建视频转码集群会面临大量的资源浪费,而使用阿里云视频点播服务,成本也比较高,而且能够控制的东西也不够多。函数计算直接集成了 FFmpeg 提供音视频处理能力,并集成到应用中心,配合 SLS 完善了监控和数据分析。语雀将音视频处理从视频点播服务迁移到函数计算之后,通过优化压缩率、减少不必要的转码等优化,将费用降低至之前的 1/5。
yq4.png

使用效果

语雀产品技术负责人不四表示:从语雀的实践来看,语雀并没有像 SFF 一样将 Web 服务迁移到函数计算之上(SFF 模式并不是现在的函数计算架构所擅长的),但是函数计算在语雀整体的架构中对稳定性、安全性和成本控制起到了非常重要的作用。总结下来函数计算非常适合下面几种场景:

1、对于时效性要求不算非常高的 CPU 密集型操作,分担主服务 CPU 压力。
2、当做沙箱环境执行用户提交的代码。
3、运行不稳定的三方应用软件服务。
4、需要很强动态伸缩能力的服务。

在引入函数计算之后,语雀现阶段的架构变成了以一个 Monolith Application 为核心,并将一些独立的功能模块根据使用场景和对能力的要求分别拆分成了 Microservices 和 Serverless 架构。应用架构与团队成员组成、业务形态息息相关,但是随着各种云服务与基础设施的完善,我们可以更自如的选择更合适的架构。

由于 Serverless 的出现,我们可以将这些存在安全风险的,消耗大量 CPU 计算的任务都迁移到函数计算上。它运行在沙箱环境中,不用担心用户的恶意代码造成安全风险,同时将这些 CPU 密集型的任务从主服务中剥离,避免出现并发时阻塞主服务。按需付费的方式也可以大大节约成本,不需要为低频功能场景部署一个常驻服务。所以我们会尽量的把这类服务都迁移到 Serverless 上。

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
3月前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
1290 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
4月前
|
人工智能 监控 测试技术
告别只会写提示词:构建生产级LLM系统的完整架构图​
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
721 51
|
4月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
4月前
|
SQL 弹性计算 关系型数据库
如何用读写分离构建高效稳定的数据库架构?
在少写多读业务场景中,主实例读请求压力大,影响性能。通过创建只读实例并使用数据库代理实现读写分离,可有效降低主实例负载,提升系统性能与可用性。本文详解配置步骤,助你构建高效稳定的数据库架构。
数据采集 Web App开发 人工智能
257 0
|
4月前
|
数据采集 运维 监控
构建企业级Selenium爬虫:基于隧道代理的IP管理架构
构建企业级Selenium爬虫:基于隧道代理的IP管理架构
|
4月前
|
传感器 人工智能 算法
分层架构解耦——如何构建不依赖硬件的具身智能系统
硬件与软件的彻底解耦,并通过模块化、分层的架构进行重构,是突破这一瓶颈、构建通用型具身智能系统的核心基石。这种架构将具身智能系统解耦为三个核心层级:HAL、感知决策层和任务执行层。这一模式使得企业能够利用预置的技能库和低代码工具快速配置新任务,在不更换昂贵硬件的前提下,实现从清洁机器人到物流机器人的快速功能切换。本文将通过对HAL技术原理、VLA大模型和行为树等核心技术的深度剖析,并结合Google RT-X、RobotecAI RAI和NVIDIA Isaac Sim等主流框架的案例,论证这一新范式的可行性与巨大潜力,探讨硬件解耦如何将机器人从一个“工具”升级为“软件定义”的“多面手”,从而
827 3
|
3月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
6月前
|
缓存 Cloud Native Java
Java 面试微服务架构与云原生技术实操内容及核心考点梳理 Java 面试
本内容涵盖Java面试核心技术实操,包括微服务架构(Spring Cloud Alibaba)、响应式编程(WebFlux)、容器化(Docker+K8s)、函数式编程、多级缓存、分库分表、链路追踪(Skywalking)等大厂高频考点,助你系统提升面试能力。
409 0

热门文章

最新文章