【好书推荐】推荐一份从入门到进阶的机器学习书单

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【好书推荐】推荐一份从入门到进阶的机器学习书单

今天推荐的图书专注机器学习主题,一共7本,都是经过实践检验的好书——《机器学习》《图解机器学习》《机器学习实战》《机器学习系统设计》《Spark机器学习》《Mahout实战》《机器学习实践:测试驱动的开发方法》。

【活动】呢,依然送5本。这次咱改个规则。评论被点赞最多的前五位小伙伴将获得赠书,获奖者可从7本书中任选一本。大家可以自由施展了,你懂得...截止28日10:00。

PS:《机器学习》是新书,刚刚上市,英文版评价非常棒,【阅读原文】放上了京东的购买链接。

当然,大数据的图书都跟机器学习相关,而我们大数据的图书相当多,如果大家想了解,可以返回订阅号界面回复“大数据”。

入门1:全面经典

Machine Learning: The Art and Science of Algorithms that Make Sense of Data

作者:Peter Flach

译者:段菲

页数:312

  • 被誉为内容最全面的机器学习指南,_Machine Learning_期刊总编Peter Flach力作
  • 数百个精选实例和解说性插图,汇集所有用于理解、挖掘和分析数据的先进方法

本书是迄今市面上内容最为全面的机器学习教材之一,书中汇集了所有用于理解、挖掘和分析数据的先进方法,并且通过数百个精选实例和解说性插图,直观而准确地阐释了这些方法背后的原理,内容涵盖了机器学习的构成要素和机器学习任务、逻辑模型、几何模型、统计模型,以及矩阵分解、ROC分析等时下热点话题。

入门2:最易上手

イラストで学ぶ 機械学習

作者:杉山将 

译者:许永伟

页数:240

  • 最简单的机器学习入门书,187张图轻松入门
  • 覆盖机器学习中最经典、用途最广的算法
  • 提供可执行的Matlab程序代码

本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。

实战1:最受欢迎

Machine Learning in Action

作者:Peter Harrington

译者:李锐 李鹏 曲亚东 王斌

页数:332

  • 最畅销机器学习图书
  • 介绍并实现机器学习的主流算法
  • 面向日常任务的高效实战内容

全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。

实战2:必应团队教你ML系统设计

Building Machine Learning Systems with Python

作者:Willi Richert,Luis Pedro Coelho

译者:刘峰

页数:224

  • 微软Bing核心团队成员推出
  • 聚焦算法编写和编程方式
  • 结合大量实例学会解决实际问题

本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。

实战3:Spark + ML

Machine Learning with Spark

作者:Nick Pentreath

译者:蔡立宇 黄章帅 周济民

页数:240

  • 当机器学习遇上最流行的并行计算框架Spark
  • 以机器学习算法为主线,结合实例探讨Spark的实际应用

本书介绍Spark的基础知识,从利用Spark API来载入和处理数据,到将数据作为多种机器学习模型的输入。此外还通过详细的例子和现实应用讲解了常见的机器学习模型,包括推荐系统、分类、回归、聚类和降维。最后还介绍了一些高阶内容,如大规模文本数据的处理,以及Spark Streaming下的在线机器学习和模型评估方法。

实战4:Mahout ML

Mahout in Action

作者:Sean Owen,Robin Anil等

译者:王斌 韩冀中 万吉

页数:340

  • Apache基金会官方推荐
  • Mahout核心团队权威力作
  • 大数据时代机器学习的实战经典

Mahout作为Apache的开源机器学习项目,把推荐系统、分类和聚类等领域的核心算法浓缩到了可扩展的现成的库中。使用Mahout可以在自己的项目中应用亚马逊、Netflix等公司的机器学习技术。

实战5:Test-Driven实践

Thoughtful Machine Learning: A Test-Driven Approach

作者:Matthew Kirk

译者:段菲

页数:204

  • 用测试驱动方法开发出可靠、稳定的机器学习算法
  • 利用机器学习技术解决涉及数据的现实问题

通过阅读本书,你将能够:

  • 在编写代码之前,运用测试驱动的方法来编写和运行测试
  • 学习八种机器学习算法的最佳用法,并进行权衡
  • 通过动手实践真实示例,对每种算法进行测试
  • 理解测试驱动开发和对解进行验证的科学方法之间的相似性
  • 获悉机器学习的风险,如对数据产生欠拟合或过拟合
  • 探索可改善机器学习模型或数据提取的各种技术

本书每一章都通过示例介绍了机器学习技术能够解决的有关数据的具体问题,以及求解问题和处理数据的方法。具体涵盖了测试驱动的机器学习、机器学习概述、K 近邻分类、朴素贝叶斯分类、隐马尔可夫模型、支持向量机、神经网络、聚类、核岭回归、模型改进与数据提取等内容。

*— 【 THE END 】—*

本公众号全部博文已整理成一个目录,请在公众号里回复「m」获取!

3T技术资源大放送!包括但不限于:Java、C/C++,Linux,Python,大数据,人工智能等等。在公众号内回复「1024」,即可免费获取!!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
32 2
|
24天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
29 1
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
23 1
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
53 2
|
1月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
28 4
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
453 1
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
1月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
1月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程

热门文章

最新文章

下一篇
无影云桌面