基于湖仓一体架构使用MaxCompute对OSS湖数据分析预测最佳实践

简介: 本篇最佳实践先创建EMR集群作为数据湖对象,Hive元数据存储在DLF,外表数据存储在OSS。然后使用阿里云数据仓库MaxCompute以创建外部项目的方式与存储在DLF的元数据库映射打通,实现元数据统一。最后通过一个毒蘑菇的训练和预测demo,演示云数仓MaxCompute如何对于存储在EMR数据湖的数据进行加工处理以达到业务预期。
直达最佳实践:【 基于湖仓一体架构使用MaxCompute对OSS湖数据分析预测最佳实践
最佳实践频道:【 最佳实践频道
这里有丰富的企业上云最佳实践,从典型场景入门,提供一系列项目实践方案,降低企业上云门槛的同时满足您的需求!

场景描述

本篇最佳实践先创建EMR集群作为数据湖对象,Hive元数据存储在DLF,外表数据存储在OSS。然后使用阿里云数据仓库MaxCompute以创建外部项目的方式与存储在DLF的元数据库映射打通,实现元数据统一。最后通过一个毒蘑菇的训练和预测demo,演示云数仓MaxCompute如何对于存储在EMR数据湖的数据进行加工处理以达到业务预期。

解决问题

  • 融合数据湖和数据仓库优势,在灵活性和效率上找到最佳平衡。
  • MaxCompute在SQL上做了大量优化与能力沉淀,可提高SQL运行性能,降低计算成本。基于集群学习PAI封装出多种贴近业务场景的算法服务,满足更多的业务需求。
  • MaxCompute云原生的弹性资源和EMR集群资源形成互补,两套体系之间进行资源的削峰填谷,不仅减少作业排队,且降低整体成本。

产品列表

  • 数据湖构建DLF
  • MaxCompute
  • DataWorks
  • E-MapReduce EMR
  • 对象存储OSS

业务架构

199.png

直达最佳实践 》》

bp-199.png

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
6月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
7月前
|
数据采集 人工智能 算法
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
259 1
|
7月前
|
消息中间件 运维 监控
企业级短信验证码服务架构设计与最佳实践
随着移动互联网的发展,短信验证码成为用户身份验证的重要手段。本文从企业级应用角度出发,探讨如何构建高可用、高并发和安全可靠的短信验证码服务。通过多通道冗余、故障自动切换和服务降级保障高可用性;利用异步处理与消息队列应对高并发;借助多层防刷、内容审核和数据加密提升安全性。同时,提供了详细的架构设计、核心模块代码示例以及监控运维方案,帮助读者理解并实现一个完整的短信验证码系统。
412 2
|
3月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
机器学习/深度学习 搜索推荐 数据挖掘
数据分析真能让音乐产业更好听吗?——聊聊大数据在音乐里的那些事
数据分析真能让音乐产业更好听吗?——聊聊大数据在音乐里的那些事
202 9
|
10月前
|
SQL 缓存 分布式计算
vivo 湖仓架构的性能提升之旅
聚焦 vivo 大数据多维分析面临的挑战、StarRocks 落地方案及应用收益。 在 **即席分析** 场景,StarRocks 使用占比达 70%,查询速度提升 3 倍,P50 耗时从 63.77 秒缩短至 22.30 秒,查询成功率接近 98%。 在 **敏捷 BI** 领域,StarRocks 已完成 25% 切换,月均查询成功数超 25 万,P90 查询时长缩短至 5 秒,相比 Presto 提升 75%。 在 **研发工具平台** 方面,StarRocks 支持准实时数据查询,数据可见性缩短至 3 分钟,查询加速使 P95 延迟降至 400 毫秒,开发效率提升 30%。
vivo 湖仓架构的性能提升之旅
|
3月前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。
|
4月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
5月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
6月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。