基于阿里云大数据平台开发大数据应用(三):基于MaxCompute 的慕课网站数据仓库

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本文是基于阿里云大数据平台开发大数据应用系列文章的第三部分,主要介绍如何基于阿里云MaxCompute 平台,开发慕课网站的数据仓库。

一、需求分析
网站访问日志是用户在访问网站服务器时产生的事件记录(log),通常记载着时间、日期、使用者及动作等相关操作的描述。在大数据时代,我们应当抓取并利用这些日志中有价值的信息,这样我们才能更好的了解网站的运行情况并做出相应的优化,甚至为公司营销策略提供依据。

在本项目中,我们提取了网站访问日志中有价值的信息,如:用户IP、访问时间、请求链接、请求状态、来源链接、用户操作系统、浏览器等。对这些数据进行处理分析,得到网站的运行情况、安全情况、运营情况以及网站的用户信息等。最终通过数据分析,得出相应的结论或提出相应的优化策略。

二、数据集构成分析
1、 access.log
包含:IP地址,访问时间,请求链接,访问状态,字节数,访问来源,用户信息
2、 ip.txt
包含:IP地址起点,IP地址终点,地点,网络运营商

三、数据处理分析:
image.png
1、 预处理access.log(Python)
由于日志文件中无法获得独立用户(UV)的cookie id,实验中判断UV的方式是:IP和用户信息。在存储时只需要保留两项信息相同,且访问时间最早的log,即可获得最终的UV。考虑到原数据集中的时间精度可能不满足上述要求,无法找出“最早log”,所以在每一条log前添加了自增长的id。
image.png

2、 创建原数据表导入数据
web_access_log_content:access.log
web_ip_content:ip.txt

3、 提取日志各个属性
新建表 web_access_log_0 存储access.log文件中提取到的各项属性信息
image.png
从web_access_log_content表中利用正则式提取各项属性。
其中ip_1表示IP的第一个数,ip_num存储IP的十进制数。这样将IP转为十进制数是为了在后续获取相应地点和网络运营商时方便关联两个表。

4、 提取IP属性
建立web_ip_info存储ip.txt中的各项属性信息,其中ip_start_1表示IP中的第一个数。
image.png
同样,在该表中IP起点和IP终点都是作为十进制数存储的,地点和运营商也依据正则表达式进行提取。

5、 在log中增加地点、运营商和访问链接信息
新建表web_access_log_1存储关联后的结果,新增属性city,company
再将地名和网络供应商的名称规范后的表存为web_access_log_2,同时加入访问链接url信息,其中网络供应商只分为四类:移动、联通、电信、其他。

6、 提取访问时间和来源链接
新建表web_access_log_3,新添加属性access_hour, ref_type

7、 处理用户(客户端)信息
新建表web_access_log_4,新添加属性client_browser, client_type
client_browser:用户使用的浏览器;
client_type:用户使用的操作系统;
至此,所有的信息已合并完全。

8、 获取UV表(即:用户第一次访问)
通过自关联,判断IP、用户信息和自增id来确定UV,同时建立web_access_log_first表来存储UV。

9、 获取最热访问链接
记录访问链接的前10名为最热访问链接,存在web_access_log_url_top表中。
image.png

10、 获取IP黑名单
新建表web_access_log_ip_black存储IP黑名单;
黑名单条件:无效访问次数>50。
image.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
265 1
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
94 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
359 2
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
200 3
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
630 2
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
1044 2
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
584 6
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
231 5

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等