基于Flink+ClickHouse构建实时游戏数据分析最佳实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本实践介绍如何快速收集海量用户行为数据,实现秒级响应的实时用户行为分析,并通过实时流计算、云数据库ClickHouse等技术进行深入挖掘和分析,得到用户特征和画像,实现个性化系统推荐服务。

直达最佳实践:【基于Flink+ClickHouse构建实时游戏数据分析最佳实践
最佳实践频道:【最佳实践频道
这里有丰富的企业上云最佳实践,从典型场景入门,提供一系列项目实践方案,降低企业上云门槛的同时满足您的需求!

场景描述

在互联网、游戏行业中,常常需要对用户行为日志进行分析,通过数据挖掘,来更好地支持业务运营,比如用户轨迹,热力图,登录行为分析,实时业务大屏等。当业务数据量达到千亿规模时,常常导致分析不实时,平均响应时间长达10分钟,影响业务的正常运营和发展。

方案优势

  • 通过云数据库ClickHouse替换原有Presto数仓,对比开源Presto性能提升20倍。
  • 利用云数据库ClickHouse极致分析性能,千亿级数据分析从10分钟缩短到30秒。
  • 云数据库ClickHouse批量写入效率高,支持业务高峰每小时230亿的用户数据写入。
  • 云数据库ClickHouse开箱即用,免运维,全球多Region部署,快速支持新游戏开服。

产品列表

  • 专有网络VPC
  • 弹性公网IP EIP
  • 云服务器ECS
  • 消息队列Kafka版
  • 云数据库ClickHouse
  • 实时计算Flink版
  • Quick BI数据可视化分析平台

业务架构

188.png

直达最佳实践 》》

bp188.png

相关文章
|
3月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
231 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2天前
|
SQL 存储 API
Flink Materialized Table:构建流批一体 ETL
本文整理自阿里云智能集团 Apache Flink Committer 刘大龙老师在2024FFA流批一体论坛的分享,涵盖三部分内容:数据工程师用户故事、Materialized Table 构建流批一体 ETL 及 Demo。文章通过案例分析传统 Lambda 架构的挑战,介绍了 Materialized Table 如何简化流批处理,提供统一 API 和声明式 ETL,实现高效的数据处理和维护。最后展示了基于 Flink 和 Paimon 的实际演示,帮助用户更好地理解和应用这一技术。
197 7
Flink Materialized Table:构建流批一体 ETL
|
2天前
|
消息中间件 Kafka 流计算
docker环境安装kafka/Flink/clickhouse镜像
通过上述步骤和示例,您可以系统地了解如何使用Docker Compose安装和配置Kafka、Flink和ClickHouse,并进行基本的验证操作。希望这些内容对您的学习和工作有所帮助。
41 28
|
3月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
137 5
|
1月前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
404 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
81 2
|
29天前
|
存储 供应链 数据建模
供应链场景使用ClickHouse最佳实践
在供应链管理中,ClickHouse凭借其高性能查询、高压缩比和实时数据处理能力,能够显著提升数据处理和分析的效率。通过合理的数据建模、优化实践和性能调优,可以充分发挥ClickHouse的优势,为供应链管理提供强有力的支持。
48 12
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
构建高效数据分析系统的关键技术
【10月更文挑战第5天】构建高效数据分析系统的关键技术
75 0
|
2月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 数据挖掘 Serverless
手把手进行数据分析,解锁游戏行为画像
本文介绍了一套利用阿里云E-MapReduce StarRocks版进行游戏玩家画像和行为分析的完整流程,旨在帮助开发者构建高性能、低成本的游戏数据分析平台。

热门文章

最新文章