云上技术 | AI一体机高速自由流收费稽核

简介: 自2019年两会政府工作报告中明确“深化收费公路制度改革,两年内基本取消全国高速公路省界收费站,实现不停车快捷收费,减少拥堵,便利群众”政策以来,全国高速公路取消省界收费站的工作快速推进。

画板 10 副本 2@2x-100.jpg

自2019年两会政府工作报告中明确“深化收费公路制度改革,两年内基本取消全国高速公路省界收费站,实现不停车快捷收费,减少拥堵,便利群众”政策以来,全国高速公路取消省界收费站的工作快速推进。在撤站实现开放式的收费模式后,一些深层次的挑战也随之而来。其中最为突出的是,高速公路的路网服务从省域路网扩大到全国一张网,收费稽查和追缴难度变大。收费的准确性依赖于路侧的收费设施设备,对车辆识别要求更高,单纯依赖于仅识别车牌已不满足新场景下的稽核要求。

最典型的例子是经过高速公路收费站时,一旦司机对收费金额有所疑问,收费员需花费大量时间来调取路网数据并进行现场沟通处理,尤其当跨省车辆路径复杂的情况,会更加耗时。同时,调取路网数据中精准车辆识别所生产的图片、视频等数据迅猛增加,对存储、算力、计算延迟也产生了数十倍压力。

针对高速自由流收费稽核当前遇到的种种现实问题,阿里云混合云AI一体机在交通大数据应用场景下采用“云边一体”的部署新模式,通过“边缘计算+AI”能力和地雀轻量级云平台,为客户提供高速公路稽核系统解决方案。

自由流收费稽核系统通过对通行车辆进行档案化管理,实现车辆整体态势分析;并利用大数据和AI算法提供标签与嫌疑车辆圈选,从海量数据中精准快速地找到待稽核的车辆名单;将嫌疑车辆列表推送给人工稽核,利用图像特征实现车辆真实通行路径还原,提供完整的证据链,加速取证过程。

基于阿里云混合云AI一体机的自由流收费稽核系统三大功能
1、稽核数据监测
通过AI算法和大数据技术,提供标签与嫌疑车辆圈选,在海量的数据中自动识别通行异常的车辆并推送给稽核人员,当日稽核数据的基础情况在关键指标区域可见(通行量、平均扣费成功率、实收金额、应收金额及稽核标签)。

01.jpg

2、一键稽核
识别出来的通行车辆异常包含通行扣费异常和通行行为异常,稽核人员可以根据标签和金额,或稽核置信度来筛选优先需要稽核的车辆,比如选取最高嫌疑选项,查询车辆异常通行对应的路径、流水以及车辆档案,这是利用图像特征实现的真实车辆路径还原,可提供完整的证据链,加速了取证的过程。

02.jpg

03.jpg

3、远程查看巡检&监控告警平台
通过云边部署的新模式,能够支持本地业务的实时智能化处理与执行,在边缘节点处,实现了数据的过滤和分析,极大的缩短了设备响应时间,减少了从设备到云端的数据流量,同时也能做到对边缘节点的远程运维,去提高服务效率和节省人力成本。如下图是阿里云混合云AI一体机的远程运维的服务中心,可在监控中心中查看刚建立的一体机项目信息,其中巡检报告和告警详情还暂时没有上传的数据,会定期把本地数据同步到远程运维服务中心里。

04.jpg

如下图是本地对云平台的应用和硬件进行的监控,保证问题和异常的有效和及时发现,并且将告警数据上传到远程运维服务中心进行展示;通过定期巡检功能对云平台进行基础的环境和服务巡检,云产品的巡检、资源的容量以及性能的巡检,对于其业务正常与否与健康程度进行了数据化评价和判定,并将生成报告上传到远程运维中心进行展示。

05.jpg


如何观看场景演示&预约POC体验?

登录【混合云体验营】->【混合云平台-全栈建云-申请体验】->【混合云平台云端体验馆-一体机-AI一体机高速自由流收费稽核】

混合云一体机(Apsara Stack Appliance)

面向AI 边缘计算场景,提供软硬件一体化解决方案,通过预安装、预集成、深度调优,同时支持远程交付和中心统一运维,有效提升系统可用性和运维效率, 使企业轻松实现云边联动, 助力企业在5G时代实现快速创新。


阿里云混合云为政企提供量身打造的混合云解决方案

从建好云、管好云、用好云三大维度提供客户视角的一体化云平台服务

更多行业实践,前往【混合云体验营

更多混合云资讯,前往【混合云官网】


全栈建云 | 智能管云 | 极致用云

相关文章
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
32 1
|
6天前
|
人工智能 Serverless API
函数计算的云上计费演进:从请求驱动到价值驱动,助力企业走向 AI 时代
函数计算计费方式历经三阶段演进:从按请求计费,到按活跃时长毫秒级计费,再到按实际资源消耗分层计费。背后是资源调度、安全隔离与开发体验的持续优化。尤其在AI时代,低负载减免、会话亲和等技术让计费更贴近真实价值,推动Serverless向“按需使用、按量付费”终极目标迈进。
|
6天前
|
人工智能 Serverless API
函数计算的云上计费演进:从请求驱动到价值驱动,助力企业走向 AI 时代
在 AI 时代,函数计算一直坚持走向“让开发者只关心业务逻辑,云厂商自动完成一切资源管理与调度”的愿景,最终让计算像水、电一样随时可得、按实际使用价值付费。
|
6天前
|
人工智能 Kubernetes 安全
重塑云上 AI 应用“运行时”,函数计算进化之路
回顾历史,电网的修建,深刻地改变了世界的经济地理和创新格局。今天,一个 AI 原生的云端运行时的进化,其意义也远不止于技术本身。这是一次设计哲学的升华:从“让应用适应平台”到“让平台主动理解和适应智能应用”的转变。当一个强大、易用、经济且安全的 AI 运行时成为像水电一样的基础设施时,它将极大地降低创新的门槛。一个独立的开发者、一个小型创业团队,将有能力去创造和部署世界级的 AI 应用。这才是技术平权的真谛,是激发全社会创新潜能的关键。
|
6天前
|
机器学习/深度学习 人工智能 资源调度
嵌入式AI领域关键技术的理论基础
本内容系统讲解嵌入式AI领域关键技术的数学理论基础,涵盖神经网络量化、剪枝、知识蒸馏与架构搜索的核心原理。深入探讨量化中的信息论与优化方法、稀疏网络的数学建模、蒸馏中的信息传递机制,以及神经架构搜索的优化框架,为在资源受限环境下实现高效AI推理提供理论支撑。
37 5
|
6天前
|
存储 机器学习/深度学习 人工智能
​​解锁AI检索的7大Embedding技术:从稀疏到多向量,一文掌握!​
本文系统解析七种主流文本嵌入技术,包括 Sparse、Dense、Quantized、Binary、Matryoshka 和 Multi-Vector 方法,结合适用场景提供实用选型建议,助你高效构建文本检索系统。
63 0
|
11天前
|
人工智能 安全 数据库
AI编程:普通人难以逾越的技术高墙-优雅草卓伊凡
AI编程:普通人难以逾越的技术高墙-优雅草卓伊凡
106 15
|
12天前
|
人工智能 JSON 前端开发
Agentic AI崛起:九大核心技术定义未来人机交互模式​
本文系统梳理AI智能体架构设计的九大核心技术,涵盖智能体基础、多智能体协作、知识增强、模型优化、工具调用、协议标准化及人机交互等关键领域,助力构建高效、智能、协同的AI应用体系。建议点赞收藏,持续关注AI架构前沿技术。
205 1
|
12天前
|
数据采集 Web App开发 人工智能
如何让AI“看懂”网页?拆解 Browser-Use 的三大核心技术模块
Browser-Use 是一种基于大语言模型(LLM)的浏览器自动化技术,通过融合视觉理解、DOM解析和动作预测等模块,实现对复杂网页任务的自主操作。它突破了传统固定选择器和流程编排的限制,具备任务规划与语义理解能力,可完成注册、比价、填报等多步骤操作。其核心功能包括视觉与HTML融合解析、多标签管理、元素追踪、自定义动作、自纠错机制,并支持任意LLM模型。Browser-Use标志着浏览器自动化从“规则驱动”向“认知驱动”的跃迁,大幅降低维护成本,提升复杂任务的处理效率与适应性。
291 25

热门文章

最新文章