AI云原生浅谈:好未来AI中台实践

简介: 2020年云栖大会上,好未来AI中台负责人刘东东,分享了他对AI云原生的理解与好未来的AI中台实践,本文为演讲内容整理。

AI时代的到来,给企业的底层IT资源的丰富与敏捷提出了更大的挑战,利用阿里云稳定、弹性的GPU云服务器,领先的GPU容器化共享和隔离技术,以及K8S集群管理平台,好未来通过云原生架构实现了对资源的灵活调度,为其AI中台奠定了敏捷而坚实的技术底座。

在2020年云栖大会上,好未来AI中台负责人刘东东,分享了他对AI云原生的理解与好未来的AI中台实践,本文为演讲内容整理。

大家好,我是好未来AI中台技术负责人刘东东。今天我给大家带来的演讲主题是《好未来AI云原生的浅谈》。我的分享主要分成四个部分:

第一,AI服务对云原生的挑战。
第二,AI与云原生的服务部署。
第三,AI与云原生的服务治理。
最后想谈一谈, K8S与Spring Cloud的有机结合。

1、AI服务对云原生的挑战

首先,我们来讲一讲AI服务对云原生的挑战。在云原生时代,AI服务其中最大的一个特点就是,需要更大的算力支持,以及更强大的一个服务的稳定性。

image.png

我们的服务不单单只是原来的一个单体服务,现在已经转入到一个集群服务。同时对性能的稳定性要求,已经从3个9,开始向5个9发起了挑战。

那么这些问题,已经不再是原有的传统技术架构能够解决的。所以我们需要一个新的技术架构。

这个新的技术架构是什么呢?就是云原生。

我们来看一看,云原生对我们带来的变化。云原生带来的最大变化,我总结为四个要点和两大方面。

四大要点分别是,DevOps、持续交付、微服务、容器的四个特点。两个方面则是服务部署和服务治理。当然,它还有12个要素的整体系统总结。

image.png

今天重点来讲的是服务部署和服务治理。

在云原生浪潮下,我们是如何处理服务部署和服务治理呢?

首先我们通过AI与云原生的服务部署,即通过K8S,加上一个资源的虚拟化,资源的池化等技术,解决了AI服务对各种硬件资源的数量级增长需求。

第二个,AI服务与云原生的服务治理进行有机结合。通过服务治理的技术,包括服务发现、HPA、负载均衡等,解决AI服务对5个9的SLA的需求。

image.png

2、AI服务的云原生部署

第一点谈一下是怎么把AI与云原生的服务部署结合起来的。

首先看一下,在AI时代下服务部署有哪些特点呢?

第一个就是硬件资源需求与费用增长的一个矛盾。AI服务对于硬件的需求成数量级增长,但是硬件预算并没有成数量级增长。

第二,AI服务对硬件的需求是多样化的。如,对高GPU的需求、高CPU的需求、高内存的需求,甚至还有部分混合的需求。

第三,AI服务对资源的隔离是有需求的。每一个AI服务都能够独立使用这些资源,并且相互之间不会打扰。

第四,AI服务能够对资源池化有要求。AI服务不需要去感知机器的具体配置,一旦将所有的资源进行池化,即可降低资源碎片,提升使用率。

最后一点,AI服务对突发的资源是有请求的。因为流量是不可预知的,企业需要随时保持,能够随时扩充资源池的能力。

image.png

我们的解决方案是什么呢?

首先,我们使用Docker的虚拟化技术,实现资源的隔离。

然后使用GPU共享技术,将GPU、内存、CPU等资源进行池化,然后将整个资源进行统一的管理。

最后,使用K8S的resources,包括污点(taints)、容忍度(tolerations)等这些技术特性,实现服务的灵活配置。

另外,建议大家要买一些高配置的机器,这些高配置的机器,主要是为了进一步降低碎片。

当然,还要实现对整个集群硬件的监控,充分利用ECS可以各种复杂的时间规则调度特性(下图的cron是一个基于时间的作业调度任务),应对高峰流量。

image.png

接下来,我们更仔细地看看好未来AI中台是如何解决这些AI部署问题的。

这个页面是我们的一个Node的服务管理,通过这个业务,我们是可以清晰看到每一个服务器上面的部署情况,包括资源使用情况、部署哪些pod、哪些节点等等。

image.png

第二个实际上是AI中台的服务部署页面。我们是可以通过压码文件,精准地控制每一个pod的内存、CPU、GPU的使用。同时,通过污点等技术,让服务器的多样化部署得到满足。

image.png

根据我们的对比实验,使用云原生的方式部署对比用户自行部署,成本大概节省了65%。而且,这样的优势会随着AI集群的增长,在经济收益上和临时流量扩容上,将会受益更多。

3、AI与云原生服务治理

接下来再讨论一下AI与云原生的服务治理。

简单介绍一下什么叫微服务?其实微服务,只是服务的一种架构风格,它实际上是将单个服务,作为一整套的小型服务开发,然后每一个应用程序都有自己进程去运行,并且通过轻量级的一些,比如说HTTP、API等进行通信。

image.png

这些服务,实际上是围绕着业务本身去构建的,可以通过自动化的部署等手段去集中管理。同时,通过不同的语言去编写,使用不同的存储资源。

总结起来微服务有哪些特点?

第一,微服务它足够小,甚至它只能做一件事情。
第二,微服务是无状态的。
第三,微服务相互之间是相互独立的,并且它们是面向接口的。
最后,微服务是高度自治的,每个人只对自己负责。

image.png

看到这些微服务的特点之后,再去想一想,AI服务与微服务特点,我们发现,AI服务天生适合微服务。每一个微服务,其实本质上只做一件事情。比如OCR,OCR服务,只做OCR服务;ASR,主要做ASR服务。

继而,每一个AI服务的请求都是独立的。举个简单例子,一个OCR请求和另外一个OCR请求,在本质上是没有什么关联的。

AI服务对横向扩容是有天生苛求的。为什么?因为AI服务队资源的渴求非常大。于是,这种扩容就显得非常有必要性了。

AI服务之间的依赖性也特别小。比如说像我们的OCR服务,可能对NLP的服务,或者是对其它的AI服务,可能没有什么太大的要求。

所有的AI服务,都可以通过写申明式的HTTP,甚至API的方式,提供AI能力。
进一步去看一下AI服务,会发现,并不能将所有的AI服务进行微服务化。于是,我们做了什么事?

第一,需要将AI服务做成一个无状态的服务,这些无状态服务,都是有畜牲化、无状态、可丢弃,并且不采用任何的一些磁盘或者内存的请求方式,去做一些存储功能。这样就可以让服务部署在任何的一个节点,任何一个地方。

当然,并不是所有的服务都能做到无状态。如果它有状态了怎么办呢?我们会通过配置中心、日志中心、Redis、MQ,还有SQL等数据库,存储这些请求状态。同时,确保这些组件的高可靠性。

image.png

这个就是好未来AI中台PaaS的整体架构图。首先可以看一下最外层是服务接口层。最外层接口层是面向外部提供AI能力的。

平台层里最重要的层是服务网关,主要是负责一些动态路由、流量控制、负载均衡、鉴权等。再往下就是我们的一些服务发现,注册中心,容错、配置管理、弹性伸缩等等一些功能。

再下面是业务层,这些业务层就是我们所说的,一些AI的推理服务。

最下面就是阿里云给我们提供的K8S集群。

也就是说整体的一个架构是,K8S负责服务部署,SpringCloud负责服务治理。

image.png

我们是怎么通过技术手段来实现刚才说的一个整体架构图?

首先是通过Eureka作为注册中心,实现分布式系统的服务发现与注册。通过配置中心Apoll来管理服务器的配置属性,并且支持动态更新。网关Gateway,可以做到隔离内外层的效果。熔断Hystrix,主要是分为分时熔断和数量熔断,然后保护我们的服务不被阻塞。

负载均衡加上Fegin操作,可以实现整体流量的负载均衡,并且将我们的Eureka相关注册信息进行消费。消费总线Kafka是异步处理的组件。然后鉴权是通过Outh2+RBAC的方法去做的,实现了用户的登录包括接口的鉴权管理,保证安全可靠。

链路追踪,采用的是Skywalking,通过这种APM的一个架构,我们可以追踪每一个请求的情况,便于定位和告警每一个请求。

最后日志系统是通过Filebeat+ES,分布式收集整个集群的日志。

image.png

同时我们也开发了一些自己的服务,比如说部署服务、Contral服务。主要是负责与K8S进行通信,收集整个K8S集群里面服务的服务部署、K8S相关的硬件信息。

然后告警系统是通过Prometheus+Monitor去做的,可以收集硬件数据,负责资源、业务等相关的告警。

数据服务是主要用于下载,包括数据回流,然后截取我们推理场景下的数据情况。

限流服务是限制每个客户的请求和QPS相关功能。

HPA实际上是最重要的一个部分。HPA不单单只支持内存级别的,或CPU级别的HPA,还支持一些P99、QPS、GPU等相关规则。

最后是统计服务,主要是用于统计相关调用量,比如请求等。

image.png

我们通过一个统一的控制台,对AI开发者提供了一站式的解决方案,通过一个平台解决了全部的服务治理问题,提升了运维的工作自动化,让原来需要几个人维护的一个AI服务的情况,变成了一个人能够做到维护十几个AI服务。

这个页面展示的就是服务路由、负载均衡、限流相关的配置页面。

image.png

这个页面展示的是我们在接口级别的一些告警,以及部署级别的硬件告警。

image.png

这是日志检索,包括实时日志相关功能。

image.png

这个是手动伸缩和自动伸缩操作页面。其中自动伸缩包括CPU、内存级别的HPA,也包括基于相应响应时长制定HPA、定时的HPA。

image.png

4、K8S与Spring Cloud的有机结合

最后来聊一下K8S与SpringCloud的有机结合。

image.png

可以看一下这两张图。左图是我们SpringCloud数据中心到路由的图。右边是K8S的service到它的pod的图。

这两个图在结构上是非常接近的。我们是怎么做到呢?实际上是将我们的Application与K8S的service进行绑定,也就是说最终注册到我们SpringCloud里面LB的地址,实际上是把它转成了K8S service的地址。这样就可以将K8S与SpringCloud结合起来。这是路由级别集合。有了这个集合,就能达到最终的效果

image.png

SprigCloud它是一个Java的技术语言站。而AI服务的语言是多样化的,有C++、Java,甚至有PHP。

为了实现跨语言,我们引入了sidecar技术,将AI服务与sidecar通过RPC去通信,就可以屏蔽语言的特性。

Sidecar主要的功能有,应用服务发现与注册、路由追踪、链路追踪,以及健康检查。

今天我的演讲到此结束,非常感谢各位的聆听。谢谢大家。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
4天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
15 2
|
7天前
|
监控 Kubernetes Cloud Native
云原生之旅:从理论到实践的探索
【10月更文挑战第34天】本文将引导你走进云原生的世界,从基础概念出发,逐步深入到实际的应用部署。我们将探讨云原生技术如何改变现代软件开发和运维的方式,并展示通过一个简单应用的部署过程来具体理解服务编排、容器化以及自动化管理的实践意义。无论你是云原生技术的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的视角和知识。
21 3
|
13天前
|
弹性计算 Kubernetes Cloud Native
云原生架构下的微服务设计原则与实践####
本文深入探讨了在云原生环境中,微服务架构的设计原则、关键技术及实践案例。通过剖析传统单体架构面临的挑战,引出微服务作为解决方案的优势,并详细阐述了微服务设计的几大核心原则:单一职责、独立部署、弹性伸缩和服务自治。文章还介绍了容器化技术、Kubernetes等云原生工具如何助力微服务的高效实施,并通过一个实际项目案例,展示了从服务拆分到持续集成/持续部署(CI/CD)流程的完整实现路径,为读者提供了宝贵的实践经验和启发。 ####
|
2天前
|
运维 Kubernetes Cloud Native
云原生技术入门及实践
【10月更文挑战第39天】在数字化浪潮的推动下,云原生技术应运而生,它不仅仅是一种技术趋势,更是企业数字化转型的关键。本文将带你走进云原生的世界,从基础概念到实际操作,一步步揭示云原生的魅力和价值。通过实例分析,我们将深入探讨如何利用云原生技术提升业务灵活性、降低成本并加速创新。无论你是云原生技术的初学者还是希望深化理解的开发者,这篇文章都将为你提供宝贵的知识和启示。
|
1天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
17 5
|
4天前
|
运维 Cloud Native 安全
云原生技术在现代软件开发中的实践与挑战####
【10月更文挑战第21天】 本文将深入探讨云原生技术在现代软件开发中的应用,分析其带来的优势及面临的挑战。通过案例分析和数据支持,揭示云原生化转型的关键因素,并展望未来发展趋势。 ####
19 7
|
3天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
3天前
|
消息中间件 缓存 Cloud Native
云原生架构下的性能优化实践与挑战####
随着企业数字化转型的加速,云原生架构以其高度解耦、弹性伸缩和快速迭代的特性,成为现代软件开发的首选模式。本文深入探讨了云原生环境下性能优化的关键策略与面临的主要挑战,通过案例分析,揭示了如何有效利用容器化、微服务、动态调度等技术手段提升应用性能,同时指出了在复杂云环境中确保系统稳定性和高效性的难题,为开发者和架构师提供了实战指南。 ####
12 3
|
3天前
|
运维 Kubernetes Cloud Native
深入理解云原生架构:从理论到实践
【10月更文挑战第38天】本文将引导读者深入探索云原生技术的核心概念,以及如何将这些概念应用于实际的软件开发和运维中。我们将从云原生的基本定义出发,逐步展开其背后的设计哲学、关键技术组件,并以一个具体的代码示例来演示云原生应用的构建过程。无论你是云原生技术的初学者,还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和实操指南。
|
4天前
|
Cloud Native 持续交付 云计算
云原生技术入门与实践
【10月更文挑战第37天】本文旨在为初学者提供云原生技术的基础知识和实践指南。我们将从云原生的概念出发,探讨其在现代软件开发中的重要性,并介绍相关的核心技术。通过实际的代码示例,我们展示了如何在云平台上部署和管理应用,以及如何利用云原生架构提高系统的可伸缩性、弹性和可靠性。无论你是云原生领域的新手,还是希望深化理解的开发者,这篇文章都将为你打开一扇通往云原生世界的大门。