2020年AI视觉检测的应用价值

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: 近十年来,制造商为了不断提升他们的利润,已经纷纷转向自动化解决方案。自动化和机器视觉正在逐步增强,甚至被人工智能所取代。下面,让我们看看2020年基于人工智能的视觉检测的应用价值。

近十年来,制造商为了不断提升他们的利润,已经纷纷转向自动化解决方案。自动化和机器视觉正在逐步增强,甚至被人工智能所取代。下面,让我们看看2020年基于人工智能的视觉检测的应用价值。

image.png

人工智能视觉检测的价值

在视觉检测方面,人工智能的价值尤为明显。基于人工智能的视觉检测技术正在完善制造业商业运作的能力。

基于人工智能的视觉检测依赖于人工智能的两个主要优势:计算机视觉和深度学习。每个人工智能系统都具备感知环境,并根据这些感知采取行动的核心能力。

人工智能通过深度学习能够适应一系列环境,使其在众多行业中都有所应用。它具有无限的潜力,可以快速开发,以满足制造商的需求。

基于AI的视觉检测的概念

与人眼能够发现缺陷一样,一个训练有素的人工智能视觉系统也能做到这一点,而且效率更高。基于人工智能的视觉系统捕捉图像,并将其发送到中央“大脑”进行处理。

就像人类的大脑一样,人工智能“大脑”通过将图像与现有知识进行对比,从而获得详细的含义。

基于人工智能的视觉系统由这两个集成组件组成:感知设备就像“眼睛”,而深度学习算法就像“大脑”。这个集成系统成功地模仿了人类的眼脑解读图像的能力。

基于人工智能的视觉系统比人眼更有效,因为人工智能“大脑”存储了更多的信息。

强大的计算能力可以快速解析可用数据。该系统可以对照片和视频中的物体进行分类,并执行复杂的视觉感知任务。

基于人工智能的视觉系统可以搜索图像和字幕,检测物体,识别和分类。

基于人工智能的视觉检测的好处

1. 快速实现

几十年前的自动化系统依赖于缺陷库、异常列表和复杂的过滤器。为了确保信息的准确性,不断积累信息、清理信息,以及重新执行信息,其过程所花费的时间会降低有效性,浪费劳动力。

人工智能和深度学习不需要长时间的编程或冗长的算法。该系统学习速度很快,几个星期就能训练完成。

2.产品改进和质量控制

制造商可以使用人工智能来记录检验结果并评估产品质量。在整体过程中可以成功跟踪数据并实施改进的指标包括:

  • 工艺配方
    设备差异

部件供应商
工厂位置

此外,还可以对检测图像和结果进行跟踪和记录。这些措施防止了未来的故障,从而节省了时间和额外的生产成本。在所有的计划和检测中应用基于深度学习的机器视觉,可以帮助制造商及早识别和解决问题。

3.降低劳动力成本

人工智能解决方案的一致性比大多数专业的人类审查程度要高。人类检测员必须经过培训,大概每次只能保持15-20分钟的高度集中。员工流动也是一个问题,人工成本每年都会增加。由于这些原因,基于人工智能的视觉检测比手工劳动更划算。

用例

人工智能正在提高各个行业制造商的竞争力。以下是航空工业、半导体制造行业和生物科学领域的最新用例。

阿里巴巴已经奋起应对冠状病毒带来的医疗挑战。阿里巴巴基于深度学习的视觉识别系统能够在胸部CT扫描中检测出冠状病毒,准确率达96%。该系统能够同时访问5000例COVID-19病例,可在20秒内提供诊断。此外,该系统还可以区分病毒性肺炎图像和冠状病毒图像。

富士通实验室在富士通大山工厂安装了一套图像识别系统。该系统通过对装配过程的监控,确保零件的质量保持在最佳水平。该系统非常成功,富士通后来在整个公司的生产基地都采用了它。

空中客车公司在2018年引进了一种基于无人机的自动飞机检测系统。该系统提高了检测质量,减少了飞机停机时间。

GlobalFoundries是半导体制造业的领导者。该公司设计了一种视觉检测系统,可以检测扫描电子显微镜(SEM)图像中的缺陷。该系统检测晶圆图中的缺陷,从而帮助确定半导体器件的性能。

以上用例揭示了人工智能在许多方面都不同程度的影响着我们的生活。尽管人工智能视觉永远无法复制人类视觉,但该技术仍在所擅长的领域不断取得进步,甚至在某些领域超越人眼和大脑。2020年,我们将会利用这项技术来获得更多的优势。


阿里云视觉智能开放平台(vision.aliyun.com)是基于阿里巴巴视觉智能技术实践经验,面向视觉智能技术的开发与应用用户,为其提供好用、易用、普惠的视觉智能API服务的平台,目前平台免费开放150+种AI能力的调用权限,别犹豫啦,快来体验吧!零代码在线体验及调试百种AI能力

钉钉扫描下方二维码,进群免费对接百种AI能力
一群二维码.jpg

相关文章
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
61 10
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
7天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
3天前
|
存储 人工智能 安全
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
|
12天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
44 17
|
3天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
36 12
|
7天前
|
传感器 机器学习/深度学习 人工智能
AI在自动驾驶汽车中的应用与未来展望
AI在自动驾驶汽车中的应用与未来展望
51 9
|
12天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建

热门文章

最新文章