揭开AI、机器学习和深度学习的神秘面纱

简介: 深度学习、机器学习、人工智能——这些流行词皆代表了分析学的未来。在这篇文章中,我们将通过一些真实世界的案例来解释什么是机器学习和深度学习。

戳这里免费开通百种视觉AI能力


深度学习、机器学习、人工智能——这些流行词皆代表了分析学的未来。在这篇文章中,我们将通过一些真实世界的案例来解释什么是机器学习和深度学习。在以后的文章中,我们将探索垂直用例。这样做的目的不是要把你变成一个数据科学家,而是让你更好地理解你可以用机器学习做什么。开发人员能越来越容易地使用机器学习,数据科学家时常与领域专家、架构师、开发人员和数据工程师一起工作,因此,详细了解机器学习的可能性对每个人来说都很重要。你的业务产生的每一条信息都有增加价值的潜力。这篇和以后的文章旨在激发你对自己数据的回顾,以发现新的机会。

lprersup.jpg

什么是人工智能?

纵观人工智能的历史,其定义被不断重写。人工智能是一个概括性术语(这个概念始于50年代);机器学习是AI的子集,而深度学习又是机器学习的子集。

1985年,当我还是美国国家安全局的实习生时,人工智能也是一个非常热门的话题。在美国国家安全局,我甚至上了一节麻省理工关于人工智能专家系统的视频课程。专家系统在规则引擎中捕获专家的知识。规则引擎在金融和医疗保健等行业中有广泛的应用,最近更是用于事件处理,但是当数据发生变化时,规则的更新和维护会变得异常困难。机器学习的优势在于从数据中学习,并且可以提供数据驱动的概率预测。

在过去10年里,分析学发生了怎样的变化?
根据《哈佛商业评论》的托马斯•达文波特,分析技术过去十年里发生了翻天覆地的变化,跨商用服务器功能更强大、成本更低的分布式计算,流媒体分析、改进的机器学习技术,都使企业能够存储和分析更多的、不同类型的数据。

类似Apache Spark这样的技术使用迭代算法,通过在内存中跨迭代缓存数据并使用更轻量级的线程,进一步加速了分布式数据的并行处理。

图形处理单元(GPUs)加快了多核服务器的并行处理速度。GPU拥有一个由数千个更小、更高效的核心组成的大规模并行架构,这些核心专门设计用于同时处理多任务,而CPU由几个为顺序串行处理而优化的核心组成。就潜在的性能而言,从Cray -1进化到如今拥有大量GPU的集群,其性能提升大约是曾经世界上最快计算机的100万倍,而成本却只有其极小一部分。

什么是机器学习?
机器学习使用算法在数据中发现模式,然后使用一个能识别这些模式的模型对新的数据进行预测。

一般来说,机器学习可以分为三种类型:监督型、非监督型、介于两者之间。监督学习算法使用标记数据,而非监督学习算法在未标记数据中发现模式。半监督学习使用标记数据和未标记数据的混合。强化学习训练算法在反馈的基础上最大化奖励。

监督学习
监督算法使用标记数据,这些数据的输入和目标的结果或标签都会提供给算法。

监督学习也被称为预测建模或预测分析,因为你建立了一个能够做出预测的模型。预测建模的一些例子是分类和回归。分类根据已知项的已标记示例(例如,已知是否为欺诈的交易)来识别一个项属于哪个类别(例如,某交易是否为欺诈)。逻辑回归预测了一个概率——例如,欺诈的概率。线性回归预测一个数值——例如,欺诈的数量。

一些分类的例子包括:

  信用卡欺诈检测(欺诈,不是欺诈)。
  信用卡申请(良好信用,不良信用)。
  垃圾邮件检测(垃圾邮件,不是垃圾邮件)。
  文字情绪分析(快乐,不快乐)。
  预测患者风险(高风险患者、低风险患者)。
  恶性或非恶性肿瘤的分类。

逻辑回归(或其他算法)的一些例子包括:

  • 根据历史汽车保险欺诈性索赔以及这些索赔的特征,例如索赔人的年龄、索赔金额、事故严重程度等,预测欺诈发生的概率。
  • 给定患者特征,预测充血性心力衰竭的概率。

So线性回归的一些例子包括:

  • 根据历史汽车保险欺诈性索赔以及这些索赔的特征,如索赔人的年龄、索赔金额、事故的严重程度等,预测欺诈金额。
  • 根据历史房地产销售价格和房屋特征(如平方英尺,卧室数量,位置),预测房子的价格。
  • 根据历史上的社区犯罪统计,预测犯罪率。

这里还有其他的监督和非监督学习算法,我们不会一一介绍,但我们会详细介绍每类中的一个。

分类示例 :借记卡诈骗
分类选用一组具有已知标签和预先确定特性的数据,并学习如何根据这些信息标记新数据。特性是你问的“是否”问题。标签就是这些问题的答案。

让我们看一个借记卡诈骗的示例。

我们想要预测什么?

  • 某一笔借记卡交易是否为欺诈。
  • 欺诈是标签(对或错)。

你可以用来进行预测的“ 是否 ”问题或属性是什么?

  • 今天花费的金额是否大于历史平均水平?
  • 今天的这些交易是否在多个国家?
  • 今天的交易数量是否大于历史平均水平?
  • 今天的新商户类型与过去三个月相比是否较高?
  • 今天是否在多个带有风险类别代码的商家处购买?
  • 今天是否有不寻常的签名与以往使用PIN相比?
  • 与过去三个月相比,是否有新的购买行为?
  • 与过去三个月相比,现在是否有国外购买?

要构建分类器模型,你需要提取对分类最有贡献的有用特性。

决策树

决策树创建一个基于输入特征预测类或标签的模型。它的工作原理在于评估每个节点上包含一个特征的问题,然后根据答案选择到下一个节点的分支。预测借记卡欺诈的可能决策树如下所示。特性问题是节点,答案“是”或“否”是树中到子节点的分支。(注意,真正的树会有更多的节点。)

问题一:24小时内的花费是否大于平均?

问题2:今天是否有多笔交易来自高风险的商家?

  • 是欺诈概率 = 90%
  • 非欺诈概率 = 50%

决策树很受欢迎,因为它们易于可视化和解释。将算法与集成方法相结合,可以提高模型的精度。一个集成例子是一个随机森林算法,它结合了决策树的多个随机子集。

无监督学习
无监督学习,有时也被称为描述分析,没有预先提供的标记数据。这些算法发现输入数据中的相似性或规律。无监督学习的一个例子是基于购买数据对相似的客户进行分组。

聚类

在聚类中,一个算法通过分析输入实例之间的相似性将它们分类。一些聚类用例包括:

  • 搜索结果分组。
  • 分组相似客户。
  • 分组相似病人。
  • 文本分类。
  • 网络安全异常检测(发现不相似之处,集群中的异常值)。

K均值算法将数据分组到K个集群中,每个数据都属于离其集群中心均值最近的集群。

聚类的一个例子是,一个公司希望细分其客户,以便更好地定制产品和服务。客户可以依据比如人口统计和购买历史记录等特征被分组。为了得到更有价值的结果,无监督学习的聚类常常与有监督学习相结合。例如,在这个banking customer 360用例中,首先根据问卷答案对客户进行细分。接着对客户群体进行分析,并标上用户画像。然后,这些标签通过客户ID与账户类型和购买内容等特性进行链接。最后,我们在被标签的客户身上应用了监督机器学习,允许将调查用户画像与他们的银行行为联系起来,以提供深入的见解。

深度学习

深度学习用来称呼多层神经网络,它是由输入和输出之间的节点“隐含层”组成的网络。神经网络有许多变种,你可以在这个神经网络备忘单上了解更多。改进的算法、GPUs和大规模并行处理(MPP)使得具有数千层的神经网络成为可能。每个节点接受输入数据和一个权重,然后向下一层的节点输出一个置信值,直到到达输出层,计算出该置信值的误差。通过在一个叫做梯度下降的过程中进行反向传播,误差会再次通过网络发送回来,并调整权值来改进模型。这个过程重复了数千次,根据产生的误差调整模型的权值,直到误差不无法再减少为止。

在此过程中,各层学习模型的最优特征,其优点是特征不需要预先确定。然而,这也意味着一个缺点,即模型的决策是不可解释的。由于解释决策可能很重要,研究人员正在开发新的方法来理解深度学习这个黑盒子。

原文链接:https://www.leiphone.com/news/202011/h810txENV9SQUKf1.html
本文转自雷锋网,本文一切观点和机器智能技术圈子无关,如需转载请至雷锋网官网申请授权。
在线免费体验百种AI能力:【点此跳转】


机器智能技术结尾二维码.png

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
95 3
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
212 9
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
155 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
102 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
55 2
|
2月前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
119 2