python实现双均线策略

简介: python实现双均线策略

本文采用了聚宽平台接口进行量化策略设置:

一、效果图

双均线策略:双均线策略,当五日均线位于十日均线上方则买入,反之卖出。
image.png

二、证券知识:

策略收益(Total Returns)
最容易理解的一个概念,策略收益也就是策略开始到结束,总资产的变化率。

----本文 选取的平安银行 这只股票,通过双均线策略来计算策略收益。

基准收益(Benchmark Returns)
如果一个策略一年赚了50%,而这一年来上证指数上涨了100%,所以要评判一个策略的好坏,不过是要看它的收益率,还需要一个基准来衡量它的优劣性,这个准基就是准基收益率。

对于股票的策略如果高于上证指数,那么就跑赢了基准收益率,也就是跑赢了大盘;低于上证指数,那么就是跑输了基准收益率。所以说一个好的策略至少要高于基准收益。

----本文 选取的沪深三百指数,获取某段时间的基本收益。

贝塔(Beta)
代表了策略表现对大盘变化的敏感性,也即是策略与大盘的相关性。

例如一个策略的Beta为1.5,则大盘涨1%的时候,策略可能涨1.5%,反之亦然;如果一个策略的Beta为-1.5,说明大盘涨1%的时候,策略可能跌1.5%,反之亦然。

 分别是策略的每日收益和基准的每日收益

阿尔法(Alpha)
alpha是超额收益,它与市场波动无关,也就是说不是靠系统性的上涨而获得收益。

 分别是策略年化收益率、基准年化收益率和无风险利率(默认0.04)。

通过预测方向或者其他可解释原因的策略也即是alpha策略;而通过波动率来带来利润的策略就是beta策略。

夏普比率(Sharpe)
描述的是策略在单位总风险下所能获得的超额收益。

是策略收益波动率,也即是策略收益率的年化标准差。

所提诺比率(Sortino)
描述的是策略在单位下行风险下所能获得的超额收益。

是策略下行波动率。

信息比率(Information Ratio)
描述的是策略在单位超额风险下的超额收益。

是策略与基准每日收益差值的年化标准差。

最大回撤(Max Drawdown)
描述的策略最大的亏损情况。最大回撤通常越小越好。

是策略两日的累计收益。

三、python代码

# 导入函数库
from jqdata import *

# 初始化函数,设定基准等等
def initialize(context):
    # 设定沪深300作为基准
    set_benchmark('000300.XSHG')
    # 开启动态复权模式(真实价格)
    set_option('use_real_price', True)
    # 输出内容到日志 log.info()
    log.info('初始函数开始运行且全局只运行一次')
    # 过滤掉order系列API产生的比error级别低的log
    # log.set_level('order', 'error')

    ### 股票相关设定 ###
    # 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')

    ## 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的)
      # 开盘前运行
    run_daily(before_market_open, time='before_open', reference_security='000300.XSHG')
      # 开盘时运行
    run_daily(market_open, time='open', reference_security='000300.XSHG')
      # 收盘后运行
    run_daily(after_market_close, time='after_close', reference_security='000300.XSHG')

## 开盘前运行函数
def before_market_open(context):
    # 输出运行时间
    log.info('函数运行时间(before_market_open):'+str(context.current_dt.time()))

    # 给微信发送消息(添加模拟交易,并绑定微信生效)
    # send_message('美好的一天~')

    # 要操作的股票:平安银行(g.为全局变量)
    g.security = '000001.XSHE'

## 开盘时运行函数
def market_open(context):
    log.info('函数运行时间(market_open):'+str(context.current_dt.time()))
    security = g.security
    # 获取股票的收盘价
    close_data = get_bars(security, count=5, unit='1d', fields=['close'])
    # 取得过去五天的平均价格
    MA5 = close_data['close'].mean()
    # 取得上一时间点价格
    current_price = close_data['close'][-1]
    # 取得当前的现金
    cash = context.portfolio.available_cash

    # 如果上一时间点价格高出五天平均价1%, 则全仓买入
    if (current_price > 1.01*MA5) and (cash > 0):
        # 记录这次买入
        log.info("价格高于均价 1%%, 买入 %s" % (security))
        print("当前可用资金为{0}, position_value为{0}".format(cash, context.portfolio.positions_value))
        # 用所有 cash 买入股票
        order_value(security, cash)
    # 如果上一时间点价格低于五天平均价, 则空仓卖出
    elif current_price < MA5 and context.portfolio.positions[security].closeable_amount > 0:
        # 记录这次卖出
        log.info("价格低于均价, 卖出 %s" % (security))
        # 卖出所有股票,使这只股票的最终持有量为0
        order_target(security, 0)

## 收盘后运行函数
def after_market_close(context):
    log.info(str('函数运行时间(after_market_close):'+str(context.current_dt.time())))
    #得到当天所有成交记录
    trades = get_trades()
    for _trade in trades.values():
        log.info('成交记录:'+str(_trade))
    log.info('一天结束')
    log.info('##############################################################')

四、最大回撤详细图
image.png

目录
相关文章
|
1月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
52 3
|
28天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法 数据处理 开发者
超越传统:Python二分查找的变种策略,让搜索效率再上新台阶!
本文介绍了二分查找及其几种Python实现的变种策略,包括经典二分查找、查找第一个等于给定值的元素、查找最后一个等于给定值的元素以及旋转有序数组的搜索。通过调整搜索条件和边界处理,这些变种策略能够适应更复杂的搜索场景,提升搜索效率和应用灵活性。
38 5
|
1月前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
39 4
|
1月前
|
算法 IDE API
Python编码规范与代码可读性提升策略####
本文探讨了Python编码规范的重要性,并深入分析了如何通过遵循PEP 8等标准来提高代码的可读性和可维护性。文章首先概述了Python编码规范的基本要求,包括命名约定、缩进风格、注释使用等,接着详细阐述了这些规范如何影响代码的理解和维护。此外,文章还提供了一些实用的技巧和建议,帮助开发者在日常开发中更好地应用这些规范,从而编写出更加清晰、简洁且易于理解的Python代码。 ####
|
1月前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
1月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
79 5
|
Python
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
1143 0
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
|
22天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
21天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。