阿里云高校计划视觉AI五天训练营 Day 1

简介: 在这个人工智能已经普及的时代,各行各业都充斥着AI的身影。大部分人认为人工智能起点高,入门难,想要使用AI服务又无法独立完成编写,阿里云视觉平台是基于阿里巴巴视觉智能技术实践经验,面向视觉智能技术企业和开发商(含开发者),为其提供高易用、普惠的视觉API服务,帮助企业快速建立视觉智能技术的应用能力的综合性视觉AI能力平台。

视觉生产技术

视觉生产定义

通过一个或一系列视觉过程,产生新的视觉表达。
1.png

视觉生产分类

生成:从0到1
拓展:从1到N
摘要:从N到1
升维:从An到An+1

增强/变换
插入/合成
擦除
1.png

视觉生产通用框架

1.png

视觉生产五个关键维度

满足视觉美学表现,可看
合乎语义内容逻辑
保证结果丰富性
提供用户预期的抓手,可控
带来用户和商业价值
1.png

精细理解

精细理解 分割抠图

视觉分割是生产的必要前置步骤,唯有理解方能生成。
识别:知道是什么
1.png
检测:识别+知道在哪里
1.png
分割:识别+检测
1.png

分割抠图 难点

复杂背景
遮挡
发丝精扣
边缘反色
透明材质
多尺度,多目标

数据严重不住,标注成本高

分割抠图 解题思路

语义分割
实例分割
image matting
1.png

分割抠图 模型框架

step1 mask粗分割
step2 mask质量统一
step3 估计精确alpha

分割抠图 抠图扩展

人像-分割不同区域
1.png
物体抠图
1.png
场景
1.png

视觉生成

平面图像设计生成——鹿班

1.png
框架流程:
需求-草图-选状态-调细节-生成-评价
样例:电商需求设计,照图生图,个性化设计,智能美工,

视频生成——AlibabaWood

1.png
框架流程:
素材准备-基础特效-智能特效-智能编排
样例:视频封面,商品展示

视觉编辑

视频的增删查改

视频植入:广告位检测定位,广告位跟踪,遮挡,透视,素材匹配,光影渲染
1.png1.png2.png

动态检测分割

视频内容擦除

擦除字幕,台标,广告,场景文字
流程:
定位-分割-充填-训练
1.png

画幅变化

视频画幅变化:主体检测分割+背景拉伸+背景补全+智能构图裁剪+超分辨率=多保留有效画面
图像尺寸变化

视觉增强

主要包括:人脸增强,去噪声,通用场景超分,LDR升HDR,视频插帧等
人脸增强
1.png
场景超分
2.png

颜色扩展

1.png

视觉制造

包装设计
服装设计:3d,材质工艺,纹理图案迁移,流行色,背景融合
1.png

视觉智能开放平台

vision
规模化、多样化、细粒度、场景化
1.png

结语

第一天的课程简单介绍了视觉AI的分类和工程运用。

相关文章
|
2月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
127 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
1月前
|
机器学习/深度学习 人工智能 算法
使用 NVIDIA TAO Toolkit 5.0 体验最新的视觉 AI 模型开发工作流程
NVIDIA TAO Toolkit 5.0 提供低代码框架,支持从新手到专家级别的用户快速开发视觉AI模型。新版本引入了开源架构、基于Transformer的预训练模型、AI辅助数据标注等功能,显著提升了模型开发效率和精度。TAO Toolkit 5.0 还支持多平台部署,包括GPU、CPU、MCU等,简化了模型训练和优化流程,适用于广泛的AI应用场景。
54 0
使用 NVIDIA TAO Toolkit 5.0 体验最新的视觉 AI 模型开发工作流程
|
18天前
|
机器学习/深度学习 人工智能 算法
AI赋能大学计划·大模型技术与应用实战学生训练营——吉林大学站圆满结营
10月30日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·吉林大学站圆满结营。
|
2月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
2月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
2月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
2月前
|
存储 人工智能 数据可视化
AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集
在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。
|
2月前
|
机器学习/深度学习 人工智能 测试技术
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
|
2月前
|
人工智能 计算机视觉 Python
AI计算机视觉笔记十九:Swin Transformer训练
本文介绍了使用自定义数据集训练和测试目标检测模型的步骤。首先,通过安装并使用标注工具labelme准备数据集;接着修改配置文件以适应自定义类别,并调整预训练模型;然后解决训练过程中遇到的依赖冲突问题并完成模型训练;最后利用测试命令验证模型效果。文中提供了具体命令及文件修改指导。
下一篇
无影云桌面