Python 自动化测试(三): pytest 参数化测试用例构建

简介: 本文节选自霍格沃玆测试学院内部教材,文末链接进阶学习。在之前的文章中主要分享了 pytest 的实用特性,接下来讲 Pytest 参数化用例的构建。

本文节选自霍格沃玆测试学院内部教材,文末链接进阶学习。

在之前的文章中主要分享了 pytest 的实用特性,接下来讲 Pytest 参数化用例的构建。

如果待测试的输入与输出是一组数据,可以把测试数据组织起来用不同的测试数据调用相同的测试方法。参数化顾名思义就是把不同的参数,写到一个集合里,然后程序会自动取值运行用例,直到集合为空便结束。pytest 中可以使用 @pytest.mark.parametrize 来参数化。

使用 parametrize 实现参数化

parametrize( ) 方法源码:

def parametrize(self,argnames, argvalues, indirect=False, ids=None, \
    scope=None):
  • 主要参数说明

    • argsnames :参数名,是个字符串,如中间用逗号分隔则表示为多个参数名
    • argsvalues :参数值,参数组成的列表,列表中有几个元素,就会生成几条用例
  • 使用方法

    • 使用 @pytest.mark.paramtrize() 装饰测试方法
    • parametrize('data', param) 中的 “data” 是自定义的参数名,param 是引入的参数列表
    • 将自定义的参数名 data 作为参数传给测试用例 test_func
    • 然后就可以在测试用例内部使用 data 的参数了

创建测试用例,传入三组参数,每组两个元素,判断每组参数里面表达式和值是否相等,代码如下:

@pytest.mark.parametrize("test_input,expected",[("3+5",8),("2+5",7),("7*5",30)])
def test_eval(test_input,expected):
    # eval 将字符串str当成有效的表达式来求值,并返回结果
    assert eval(test_input) == expected

运行结果:

plugins: html-2.0.1, rerunfailures-8.0, xdist-1.31.0, ordering-0.6, \
forked-1.1.3, allure-pytest-2.8.11, metadata-1.8.0
collecting ... collected 3 items

test_mark_paramize.py::test_eval[3+5-8] 
test_mark_paramize.py::test_eval[2+5-7] 
test_mark_paramize.py::test_eval[7*5-35] 

============================== 3 passed in 0.02s ===============================

整个执行过程中,pytest 将参数列表 [("3+5",8),("2+5",7),("7*5",30)] 中的三组数据取出来,每组数据生成一条测试用例,并且将每组数据中的两个元素分别赋值到方法中,作为测试方法的参数由测试用例使用。

多次使用 parametrize

同一个测试用例还可以同时添加多个 @pytest.mark.parametrize 装饰器, 多个 parametrize 的所有元素互相组合(类似笛卡儿乘积),生成大量测试用例。

场景:比如登录场景,用户名输入情况有 n 种,密码的输入情况有 m 种,希望验证用户名和密码,就会涉及到 n*m 种组合的测试用例,如果把这些数据一一的列出来,工作量也是非常大的。pytest 提供了一种参数化的方式,将多组测试数据自动组合,生成大量的测试用例。示例代码如下:

@pytest.mark.parametrize("x",[1,2])
@pytest.mark.parametrize("y",[8,10,11])
def test_foo(x,y):
    print(f"测试数据组合x: {x} , y:{y}")

运行结果:

plugins: html-2.0.1, rerunfailures-8.0, xdist-1.31.0, ordering-0.6,\
 forked-1.1.3, allure-pytest-2.8.11, metadata-1.8.0
collecting ... collected 6 items

test_mark_paramize.py::test_foo[8-1] 
test_mark_paramize.py::test_foo[8-2] 
test_mark_paramize.py::test_foo[10-1] 
test_mark_paramize.py::test_foo[10-2] 
test_mark_paramize.py::test_foo[11-1] 
test_mark_paramize.py::test_foo[11-2] 

分析如上运行结果,测试方法 test_foo( ) 添加了两个 @pytest.mark.parametrize() 装饰器,两个装饰器分别提供两个参数值的列表,2 * 3 = 6 种结合,pytest 便会生成 6 条测试用例。在测试中通常使用这种方法是所有变量、所有取值的完全组合,可以实现全面的测试。

@pytest.fixture 与 @pytest.mark.parametrize 结合

下面讲结合 @pytest.fixture 与 @pytest.mark.parametrize 实现参数化。

如果测试数据需要在 fixture 方法中使用,同时也需要在测试用例中使用,可以在使用 parametrize 的时候添加一个参数 indirect=True,pytest 可以实现将参数传入到 fixture 方法中,也可以在当前的测试用例中使用。

parametrize 源码:

def parametrize(self,argnames, argvalues, indirect=False, ids=None, scope=None):

indirect 参数设置为 True,pytest 会把 argnames 当作函数去执行,将 argvalues 作为参数传入到 argnames 这个函数里。创建“test_param.py”文件,代码如下:

# 方法名作为参数
test_user_data = ['Tome', 'Jerry']
@pytest.fixture(scope="module")
def login_r(request):
    # 通过request.param获取参数
    user = request.param
    print(f"\n 登录用户:{user}")
    return user

@pytest.mark.parametrize("login_r", test_user_data,indirect=True)
def test_login(login_r):
    a = login_r
    print(f"测试用例中login的返回值; {a}")
    assert a != ""

运行结果:

plugins: html-2.0.1, rerunfailures-8.0, xdist-1.31.0, ordering-0.6,\
 forked-1.1.3, allure-pytest-2.8.11, metadata-1.8.0
collecting ... collected 2 items

test_mark_paramize.py::test_login[Tome] 
test_mark_paramize.py::test_login[Jerry] 

============================== 2 passed in 0.02s ===============================

Process finished with exit code 0

 登录用户:Tome PASSED           [ 50%]测试用例中login的返回值; Tome

 登录用户:Jerry PASSED           [100%]测试用例中login的返回值; Jerry

上面的结果可以看出,当 indirect=True 时,会将 login_r 作为参数,test_user_data 被当作参数传入到 login_r 方法中,生成多条测试用例。通过 return 将结果返回,当调用 login_r 可以获取到 login_r 这个方法的返回数据。

更多技术文章分享及测试资料点此获取

相关文章
|
12月前
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
444 11
|
2月前
|
敏捷开发 测试技术 API
测试金字塔:构建高效自动化测试策略的基石
测试金字塔:构建高效自动化测试策略的基石
236 116
|
2月前
|
测试技术 API 数据库
测试金字塔:构建高效自动化测试策略的基石
测试金字塔:构建高效自动化测试策略的基石
260 114
|
测试技术 持续交付
探索软件测试中的自动化测试策略
随着软件开发周期的加速和市场需求的不断增长,传统的手动软件测试方法已难以满足现代软件开发的高效性和准确性要求。本文旨在探讨自动化测试在软件测试中的重要性、实施策略及其对提高软件质量的影响。通过分析自动化测试的优势与挑战,以及提供实用的自动化测试工具和框架选择指南,旨在帮助读者理解并应用自动化测试以提升软件开发效率和产品质量。
|
12月前
|
机器学习/深度学习 人工智能 监控
软件测试中的自动化测试策略与最佳实践##
在当今快速发展的软件行业中,自动化测试已成为确保软件质量和加速产品上市的关键工具。本文将探讨自动化测试的重要性,分析不同类型的自动化测试工具和框架,并深入讨论实施自动化测试的最佳实践。通过案例研究和数据分析,我们将揭示如何有效整合自动化测试到软件开发生命周期中,以及它如何帮助团队提高测试效率和覆盖率。 ##
201 1
|
11月前
|
存储 测试技术 API
pytest接口自动化测试框架搭建
通过上述步骤,我们成功搭建了一个基于 `pytest`的接口自动化测试框架。这个框架具备良好的扩展性和可维护性,能够高效地管理和执行API测试。通过封装HTTP请求逻辑、使用 `conftest.py`定义共享资源和前置条件,并利用 `pytest.ini`进行配置管理,可以大幅提高测试的自动化程度和执行效率。希望本文能为您的测试工作提供实用的指导和帮助。
1026 15
|
监控 jenkins 测试技术
软件测试中的自动化测试策略与实践##
本文旨在探讨自动化测试在软件开发生命周期中的重要性,以及如何有效地实施自动化测试策略。通过分析自动化测试的优势和挑战,结合具体的实践案例,提出了一系列实用的自动化测试方法和技巧。本文不仅为读者提供了理论知识的深入解析,还强调了实际操作中的关键注意事项,旨在帮助读者更好地理解和应用自动化测试技术,提高软件质量。 ##
160 27
|
12月前
|
Java 测试技术 API
探索软件测试中的自动化测试框架
本文深入探讨了自动化测试在软件开发中的重要性,并详细介绍了几种流行的自动化测试框架。通过比较它们的优缺点和适用场景,旨在为读者提供选择合适自动化测试工具的参考依据。
|
12月前
|
数据管理 测试技术 持续交付
软件测试中的自动化测试策略与最佳实践
在当今快速迭代的软件开发环境中,自动化测试已成为确保软件质量和加速产品上市的关键手段。本文旨在探讨软件测试中的自动化测试策略,包括选择合适的自动化测试工具、构建有效的自动化测试框架以及实施持续集成和持续部署(CI/CD)。通过分析自动化测试的最佳实践,本文为软件开发团队提供了一系列实用的指南,以优化测试流程、提高测试效率并减少人为错误。
316 4
|
12月前
|
监控 测试技术 定位技术
探索软件测试中的自动化测试框架选择与实施###
本文不概述传统意义上的摘要内容,而是直接以一段对话形式引入,旨在激发读者兴趣。想象一下,你是一名勇敢的探险家,面前摆满了各式各样的自动化测试工具地图,每张地图都指向未知的宝藏——高效、精准的软件测试领域。我们将一起踏上这段旅程,探讨如何根据项目特性选择合适的自动化测试框架,并分享实施过程中的关键步骤与避坑指南。 ###
177 4

推荐镜像

更多