人工智能如何提升大数据存储与管理效率?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 通过使用AI数据存储,供应商和企业可以将存储管理提升到一个新的水平。而且,存储管理员可以找到他们目前正在努力管理的指标的解决方案。

随着大数据的大量来源以及企业可用数据量的增加,存储容量规划已成为存储管理员的问题。据估计,每天产生2.5万亿字节的数据。现在,如果以神经元计算的话,那就是相当于2.5亿个人类大脑的海量数据。而且,相同的估计表明,全球总数据的90%是从2016年到2018年生成的。

image.png

可以简单地说,每天生成越来越多的数据,这正增加了存储工作负载的规模和复杂性。但是,人工智能可以拯救存储管理员,帮助他们高效地存储和管理数据。通过使用AI数据存储,供应商和企业可以将存储管理提升到一个新的水平。而且,存储管理员可以找到他们目前正在努力管理的指标的解决方案。

存储管理员需要努力的主要指标

存储管理员在管理存储问题时面临一些挑战。而且,如果他们克服了这些挑战,将帮助他们在数据存储的各个方面之间找到适当的平衡,例如在哪里分配工作负载,如何分配工作负载以及如何优化堆栈等等。

一般而言,吞吐量是指处理某事物的速率。在网络级别,吞吐量的度量单位是Mbps(兆位/秒),而在存储级别,吞吐量的度量单位是MB /秒(兆字节/秒)。由于一个字节等于八兆位,因此生产率在存储级别上提高了。并且,变得难以管理提高的生产率。

1. 延时

延迟是服务器完成请求所花费的时间。关于存储,这是指满足单个存储块的请求所花费的时间。存储块或块存储是将数据存储在卷中的块。纯延迟不受吞吐量影响,但是如果单个块请求很大,则应用延迟可能会随着吞吐量的增加而偏离。

2. IOPS(每秒输入/输出操作)

IOPS是指存储堆栈每秒可以处理的离散读写任务的数量。存储堆栈是一种允许过程调用的数据结构。这意味着将多个过程彼此存储在堆栈中,然后在调用和返回的基础上一个接一个地执行所有过程。例如,如果一个过程被调用,它将被执行,然后返回,以便在堆栈中调用下一个过程。而且,在谈论IOPS时,基础输入/输出任务可以达到存储系统的堆栈限制。例如,读取一个大文件和多个小文件可能会对IOPS产生影响。由于读取单个大文件仅需要执行一个读取任务,因此可以以较高的速度执行它,而另一方面,读取多个文件的速度非常慢,因为需要执行许多读取任务。

AI数据存储如何解决存储问题

image.png

企业管理员和存储供应商处理各种各样的存储类型。而且,它们还满足不同输入/输出服务的指标。大型文件共享应用可能需要适当的吞吐量,但也必须允许延迟损失,因为大型而复杂的应用可能会对延迟产生不利影响。另一方面,电子邮件服务器可能需要大量存储,低延迟和良好的吞吐量,但它可能不需要非常苛刻的IOPS配置文件。并且,存储管理员应该决定应该为哪些存储分配什么资源。因此,在组织中运行着成千上万的服务时,对基础存储的管理超过了人们进行明智更改的能力。而且,这就是AI算法派上用场的地方。

人工智能支持的存储管理和计划

AI可以监控存储以检测多种工作负载的模式和性能。这里的工作负载是由各种输入/输出特征或应用任务生成的数据流。通过检测这些工作负载模式,AI可以帮助存储管理员洞悉哪些工作负载可能使他们面临最大化存储阵列的风险。此外,存储监视还可以帮助了解是否有任何额外的工作负载可以放入阵列中。而且,如果添加到阵列中,那么工作负载将造成多少中断。

例如,假设一家企业正在向流程中添加电子邮件服务器。在这种情况下,人工智能系统可以帮助预测存储阵列将能够满足该服务器的存储需求还是将其最大化。借助此类技术,存储管理员可以主动获取有关如何将不同的工作负载分配给不同的存储堆栈并最大程度地减少延迟的信息。因此,将AI集成到存储阵列,存储供应商和组织中可以优化存储堆栈。

除了监视存储活动外,存储管理员还需要检查和分析存储系统要使用的应用的编码和错误。这有助于他们更好地了解如何围绕应用的需求设计存储体系结构。他们通过了解应用的输入/输出模式来做到这一点。用于执行此操作的最常见技术是捕获应用的跟踪。

Strace是Linux的用户空间实用程序,可用于诊断、调试和获取有关输入和输出功能的指令。但是,由于复杂的应用可以具有多个输入/输出功能,因此这对人类来说可能是一个挑战。另一方面,ML算法可以轻松地提取和分析大量数据,并解决许多存储问题,最好是通过查看存储系统本身来解决。此外,通过使用大量数据训练算法,以了解特定堆栈或整个应用如何收集和存储数据,它们可以帮助实现对该特定应用存储活动的实时观察,以防止堆栈最大化并改善存储容量。

AI数据存储可满足客户需求

遥测数据是自动记录和无线传输来自远程或不可访问来源的数据。遥测以下列方式起作用:传感器在源处测量数据,它们将其转换为电压,然后将其与定时数据合并为单个数据流,该数据流将传输到远程接收器。接收后,可以根据用户要求对数据进行处理。

AI的计算机视觉技术可以扫描遥测数据,以保护存储阵列免受漏洞侵害。当使用有关漏洞的历史数据进行训练时,机器学习算法可以将来自各种应用程序的传入数据与历史数据进行匹配,以发现漏洞的可能性。因此,借助AI的预测分析,存储供应商可以着眼于在遇到客户之前防止存储问题。

AI数据存储仍处于起步阶段,但已经显示出了惊人的结果。而且,因此云供应商和其他存储管理员正在对AI进行越来越多的投资,以使用超融合存储系统进行存储维护。采用主流AI数据存储肯定会帮助企业控制上述所有指标,并为其客户提供更好的服务。

原文链接:https://ai.51cto.com/art/202010/629739.htm
本文转载自51CTO,本文一切观点和机器智能技术圈子无关。
在线免费体验百种AI能力:【点此跳转】


机器智能技术结尾二维码.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
2月前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
40 4
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与大数据的融合之道####
— 本文旨在探讨人工智能(AI)与大数据如何协同工作,以推动技术创新和产业升级。通过分析二者的基本概念、核心技术及应用场景,揭示它们相互促进的内在机制,并展望未来发展趋势。文章指出,AI提供了智能化处理数据的能力,而大数据则为AI提供了海量的训练资源,两者结合将开启无限可能。 ####
|
2月前
|
人工智能 算法 搜索推荐
探索人工智能与大数据的融合之道####
本文深入探讨了人工智能(AI)与大数据之间的紧密联系与相互促进的关系,揭示了二者如何共同推动科技进步与产业升级。在信息爆炸的时代背景下,大数据为AI提供了丰富的学习材料,而AI则赋予了大数据分析前所未有的深度与效率。通过具体案例分析,本文阐述了这一融合技术如何在医疗健康、智慧城市、金融科技等多个领域展现出巨大潜力,并对未来发展趋势进行了展望,强调了持续创新与伦理考量的重要性。 ####
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与大数据的融合之美####
【10月更文挑战第29天】 身处信息技术飞速发展的时代,人工智能与大数据如同两颗璀璨的星辰,在科技的夜空中交相辉映,共同推动着社会进步与变革的浪潮。本文旨在揭开AI与大数据深度融合的神秘面纱,探讨这一融合如何引领技术前沿,激发创新活力,并展望其在未来世界中的无限可能。通过深入浅出的解析,展现技术背后的逻辑与魅力,邀请读者一同踏上这场科技与智慧的探索之旅。 ####
98 2
|
2月前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
745 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
探索人工智能与大数据的融合之路####
本文将深入探讨人工智能(AI)与大数据之间的共生关系,揭示二者如何相互促进,共同推动技术边界的拓展。不同于传统摘要的概述形式,本部分将以一个生动的比喻开篇:如果把大数据比作广阔无垠的数字海洋,那么人工智能就是航行其间的智能航船,两者相辅相成,缺一不可。随后,简述文章将从数据采集、处理、分析到决策应用的全流程中,详细阐述AI如何借助大数据的力量实现自我迭代与优化,以及大数据如何在AI算法的驱动下释放出前所未有的价值。最后,预告文章还将探讨当前面临的挑战与未来趋势,为读者勾勒一幅AI与大数据融合发展的宏伟蓝图。 ####
|
3月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
59 4
|
3月前
|
消息中间件 存储 缓存
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
84 3
|
3月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
58 1
下一篇
开通oss服务