如何用好云原生数据湖?

本文涉及的产品
对象存储 OSS,20GB 3个月
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 数据湖可以很好地帮助企业应对当前数据场景越来越多、数据结构越来越复杂、数据处理需求越来越多样化的问题。阿里云从2018年起就开始布局数据湖,推出了云原生数据湖分析Data Lake Analytics(DLA),从数据湖管理(帮助客户高效管理构建数据湖),Serverless Spark(提供高性价比的大规模计算),Serverless SQL(提供高性价比的在线交互式分析)三个方面帮助客户挖掘数据价值。本文分享相关技术挑战及解决方案。

image.png

一 数据湖的机遇与挑战

数据湖可以很好地帮助企业应对当前数据场景越来越多、数据结构越来越复杂、数据处理的需求越来越多样化的问题。Gartner 2020年发布的报告显示目前已经有39%的用户在使用数据湖,34%的用户考虑在1年内使用数据湖。

从2018年起,阿里云就开始布局数据湖,推出了云原生数据湖分析Data Lake Analytics(简称:DLA)产品,结合对象存储OSS一起,从弹性扩展、按需付费、服务化等方面打造有竞争力的产品。通过采用存储计算分离模式,存储和计算完全按需付费,用户只需要为实际产生价值的计算买单;DLA深度定制云原生弹性能力,实现作业级弹性,一分钟可弹300个节点。云原生数据湖分析DLA从成本、弹性、交付能力方面相对传统数据分析方案,获得了较大的提升。

image.png

在云上也已经有数千家企业使用数据湖服务满足数据应用,如友盟+ 的U-DOP数据开放平台根据友盟+多年沉淀的大数据领域经验,形成了以APP、WEB、小程序、广告营销、社会化分享和推送为基础的多端主题数据的采集和处理能力,为客户形成规范化的多端数据资产。尤其是利用了数据湖的弹性能力,应对了双十一峰值期间DAU暴涨的业务变化,例如,通过实施分析搜索关键词的变化,改变首页广告推荐信息,对活跃用户和下单用户分不同渠道的分析梳理,及时调整优惠策略,以吸引更多的客户新购及复购等。

数据库与大数据一体化趋势在加强,传统的数据库使用者与DBA,也可以使用及维护大数据系统,一体化解决大数据的问题。具体在DLA体现在数据库的数据无缝与大数据结合,比如DLA提供的一键入湖建仓的功能;DLA Serverless SQL兼容MySQL协议及部分语法。

DLA Serverless产品形态,开发者只需要使用平台接口即可,如使用DLA SQL的JDBC接口提交SQL,使用DLA Spark的OpenAPI提交Spark作业。开发者只需要关注业务逻辑本身,不需要关心平台的复杂逻辑。原来使用开源组件遇到的很多痛点都可以迎刃而解:

入门门槛高

Hadoop生态往往需要多个组件同时使用,比如Yarn、HDFS、Spark、Hive、Kerberos、Zookeeper等等。开发者需要了解所有组件,因为开发过程中这些组件往往都会接触到。

开发维护困难

开发者在开发过程中会遇到各个组件带来的使用问题,开发者需要了解所有这些组件以应对这些问题。这些加重了开发者的使用负担。

稳定性难以保障

开源组件本身都必须经过细致的调参并加上合适的硬件资源配置,才能良好运行,并且需要修复不少BUG,出现问题没有兜底。

缺乏适应云的性能优化

云上的OSS、PolarDB等组件都是云原生的组件,开源组件对这部分的改造适应不足,没有充分挖掘出更高的性能。

DLA从数据湖管理(帮助客户高效管理构建数据湖),Serverless Spark(提供高性价比的大规模计算),Serverless SQL(提供高性价比的在线交互式分析)三个方面帮助客户挖掘数据价值。整体架构如下所示。接下来,本文将从这三个方面,分别讲述相关技术挑战以及解决方案。

image.png

二 如何管理与构建数据湖?

数据湖中数据难以管理主要体现在两个方面:

  • 已经在数据湖存储OSS上面的数据如何高效的构建元数据。
  • 非OSS数据如何高效的入湖建仓。

数据湖管理相关的主要功能包括元数据管理、元数据发现、数据库入湖建仓、实时数据入湖。接下来重点介绍“海量文件元数据自动构建技术”和“入湖建仓数据管理技术”两个关键技术。

1 海量文件元数据自动构建技术

当以OSS作为数据湖存储,存储的数据文件具有以下几个特性:

  • 格式丰富:包括CSV、Text、JSON、Parquet、Orc、Avro、hudi、Delta Lake等格式,其中CSV、Text又包含多种自定义的分隔符等。
  • 文件数在百万级别:OSS的扩展性及性价比较好,用户存储在OSS的文件会是百万级别。
  • 文件动态上传:存储在OSS上面数据文件具有动态持续上传的特性,新的文件如何快速增量修改元数据。

为了高效的为OSS上面的海量数据构建元数据,阿里云DLA提出并实现了“海量文件元数据自动构建技术”。具体技术如下图所示,核心解决了:万表万分区识别、增量感知更新元数据两个问题。

image.png

万表万分区识别

用户OSS上面的文件数量会到百万级别,这些文件不仅格式不同,比如JSON、CSV、Text等,而且同一种格式由于业务属性不同具体的Schema字段也不一样。该技术通过文件Schema识别器搭配文件分类器支持自动生成万表万分区。其中文件Schema识别器比如针对JSON单文件识别到0.15s、CSV单文件识别0.2s,搭配可插拔的智能采样策略及分布式策略,百万文件的Schema识别可以到分钟级别。文件分类器通过树的结构进行聚合、剪枝、压缩,百万级别文件的分类识别需要290ms左右。

增量感知更新

户会往OSS上面持续不断的上传文件,元数据自动构建既要把属于已经创建表的文件Schema变化更新到已有的表,同时对独立新增的文件创建新的表。这里一方面“文件Schema识别器”通过获取OSS上面文件的增加、删除变化对变化的文件进行识别,同时“文件分类器”对新增的文件Schema和已经创建的表进行对别生成变化策略,目前支持增加分区、增加字段、字段不更改、不感知文件删除4种策略,后续可以持续添加新的策略。

2 入湖建仓数据组织技术

把DataBase及消息日志服务的数据统一存储到数据湖存储OSS进行管理,能够满足计算加速、构建数仓归档、冷热分离等业务需求。DLA的入湖建仓数据组织技术包括三种数据组织管理模式:镜像模式、分区模式、增量模式,三种模式能够搭配友好支持这些业务场景。

image.png

镜像模式

每次全量同步源库一个Database下面所有表的数据到数据湖存储OSS之上,同步期间可以做到源库负载增加控制在10%以内。这里主要使用了全局统一数据分片调度算法。保持数据湖的数据和源库一致。

分区模式

面对归档场景支持按天全量及增量同步源库数据到数据湖,并以时间分区的方式进行组织,方便归档管理。这种模式能够做到小时级别的时间延迟。

增量模式

这种模式通过行列混存技术、commitlog及index管理技术,可以做到T+10min的数据入湖。其中通过delta的增量文件及异步compaction技术解决了小文件问题;通过delta增量文件及索引技术可以支持Database场景更新、删除日志的增量实时写入;通过commitlog的方式记录分区文件的映射,解决百万分区在传统Catalog管理模式性能慢的问题。

三 云原生数据湖平台需打通云基础设施

DLA整体是一个多租户的架构,分Region部署,每个Region的用户共享一套控制逻辑。虚拟集群VC是逻辑的隔离单元。平台支持 Serverless Spark、Serverless SQL等引擎,打造云原生服务。

image.png

如上图所示,平台主要面临的挑战有:资源高效供给、安全防护、访问数据源的带宽保障。

1 资源高效供给

云原生平台基于阿里云的底座ECS&ACK&ECI,与阿里云IAAS资源大池打通,本Region跨可用区资源调度,保障资源的供给。支持1分钟弹300个节点,单客户在大Region 5w计算节点资源的保障。

2 安全防护

用户可以写任意的代码平台内运行,可能是故意恶性的攻击行为,如果没有任何保护,则平台面临安全危险。在安全方面,我们通过如下技术保障安全性:

  • 一次密钥:每个Job任务都会去TokenServer申请临时的Token,Job失效Token会过期,如果存在攻击行为,则平台会直接让Token过期,则访问Meta等服务会被拒绝。
  • 预防DDOS&注入攻击:所有的访问平台服务的请求,都会对接到安全防护中心,安全防护中心检测有任何攻击或者注入行为,直接关闭网络端口。
  • 计算容器隔离:计算节点间采用阿里云自研的安全容器,容器本身可以实现VM相同的安全隔离级别。
  • 安全白名单:用户互相之间的网络是完全隔离的。
  • ENI虚拟网卡:打通VPC需要配置自己账号下的安全组和虚拟交换机(VSwitch),配置之后结算节点容器会分配用户VPC对应VSwitch网段的的IP,并挂载用户的安全组。

3 高吞吐网络带宽

  • 访问OSS服务是通过高吞吐的带宽服务。
  • 使用ENI技术访问自持VPC,跟在自持VPC内ECS上部署计算引擎访问自持VPC内数据一样,带宽同样是VPC内网带宽。

四 Serverless Spark服务的技术挑战

Apache Spark是目前社区最为流行的开源引擎,不但具备流、SQL、机器学习以及图等计算能力,也可以连接丰富的数据源。但是,面对数据湖场景,传统集群版Spark方案,除了面临前面提到的数据管理困难、运维成本、计算资源弹性能力不足、企业级能力弱等问题外,还面临访问OSS的性能不佳、复杂作业难以调试等问题。

借助于第二章节提到的数据湖管理机制,可以很好地解决数据管理难题。借助于第三章节提到的多租户安全平台,DLA Spark实现了全新的云原生Serverless产品形态,很好地解决了弹性问题、运维成本问题以及企业级需求问题。本章节对Spark访问OSS的性能优化以多租户UI服务做进一步展开。

1 Spark访问OSS优化

社区版本的问题

开源版Spark访问OSS数据默认采用Hadoop FileFormat接口直接对接OSSFileSystem实现。该方法在实践中发现存在性能差,一致性难以保证等问题。

(1)Spark访问OSS性能差

核心原因在于OSS KV模型跟HDFS文件树模型的差异。FileFormat算法最初设计是基于HDFS文件系统,然而对象存储如OSS,为了解决扩展性,本质上采用的是KV模型。KV模型相对于HDFS文件系统差异较大,比如RenameDirectory接口,在HDFS中只是指针操作,但在KV中,需要将所有子文件和目录的KV执行Rename,性能开销很大,并且保证不了原子性。Hadoop FileOutputFormat在写入数据的时候先写到临时目录,最后写入最终目录,临时目录到最终目录的过程中需要做文件树合并,合并过程中有大量Rename操作。

(2)一致性难保证

FileFormat v1算法中,合并文件树操作全部在AppMaster单点执行,效率非常低,尤其是动态分区场景。为了解决AppMaster单点,社区提供了算法2,其核心思路是将合并过程并行到Task中执行,在性能上会有一定的提高,但是,如果Job执行失败,部分成功的Task会将数据写入最终数据目录,导致脏数据问题。

Spark OSS访问优化

image.png

(1)基于MultipartUpload的FileOutputFormat实现

针对Spark访问OSS的特点,我们全新实现了Hadoop FileOutputFormat接口,如上图所示。算法的改进重点在优化合并操作,合并的核心是解决文件何时可见的问题。OSS提供MultipartUpload接口,也就是断点续传功能,文件可以分片上传,上传没有结束,分片文件是不可见的。借助该特性,我们可以让Task直接将数据写入到最终目录,只有作业成功才让文件最终可见,该方法不用先写入临时目录,也就大大减少了元数据的操作。对于执行失败的Task写入的临时分片,我们在作业结束时,执行Abort操作,就可以将其删除,这也就降低了空间占用。

针对Spark典型ETL Benchmark Terasort,在1TB输入数据量的情况下,DLA FileOutputFormat执行时间缩短62%,性能提升163%。而针对动态分区场景,社区算法1运行失败,算法2可以执行成功,DLA FileOutputFormat算法相比算法2性能还要进一步提升124%。

(2)OSS元数据Cache

Spark读取OSS的过程中,在ResolveRelation阶段,Spark会遍历OSS的目录,解析表结构和分区结构,以及解析Schema,该过程中同样会有大量元数据操作,并且同一个OSS 对象的元数据会被访问多次。针对该问题,我们实现了对OSS元数据的缓存,第一次访问到的OSS对象元数据就会被缓存到本地,后续如果访问该对象直接读取本地缓存。这种方式可以最大限度降低对OSS元数据的访问。Cache机制可以让ResolveRelation有1倍左右的性能提升,针对典型的Spark查询场景,该机制整体可以提升60%的性能。

2 多租户UI服务

UI服务对于开发者来说至关重要,开发人员依赖UI服务进行作业调试,以及生产作业的问题排查。好的UI服务可以很好地加速研发效率。

HistoryServer的痛点

Spark社区提供HistoryServer提供对Spark历史作业的UI和日志服务,在实际应用中遇到诸多痛点,典型如下:

(1)Eventlog空间开销大

HistoryServer依赖Spark引擎将运行中的Event信息全部记录到FileSystem中,然后后台回放并绘出UI页面。对于复杂作业和长作业Eventlog量较大,可以达到百GB甚至TB级别。

(2)复杂作业和长作业不支持

复杂作业或者长作业的Eventlog很大,HistoryServer会解析失败,甚至OOM。再加上空间开销大的原因,用户一般都只能关闭Eventlog。

(3)Replay效率差,延迟高

HistoryServer采用后台Replay Eventlog的方式还原Spark UI,相当于把Spark引擎的事件全部重放一遍,开销大,会有延迟。特别是作业较多或者较复杂的情况下,延迟可达分钟甚至十分钟级别。

DLA多租户SparkUI

image.png

SparkUI服务是DLA平台自研的多租户UI服务,针对社区方案做了深度优化:

(1)去Eventlog

DLA Spark去掉了Eventlog依赖,在作业结束的时候,Spark Driver只是dump UI的Meta到OSS,保存作业结束前的页面元信息。这部分信息只是相对于Eventlog来说,会大大减少,即使非常复杂的作业也只有MB级别。UiServer读取OSS上的UI Meta,将其反序列化出来即可展示SparkUI页面。

(2)UIServer水平扩展

UIServer主要负责解析历史UI Meta和提供Stderr和Stdout日志服务,是轻量化,无状态的,可以实现水平扩展,进而支持万级别客户同时在线服务。UIServer URL采用加密token作为参数,token代表的用户身份,作业id,UIServer据此实现多租户服务化。

(3)本地日志自动滚动

对于长作业而言,Stderr或者Stdout信息会随着时间增加累积,最终甚至可能打爆磁盘。DLA Spark安全容器内置后台进程,实现日志滚动,保存最有价值的最近一段时间的日志。

五 Serverless SQL服务的技术挑战

DLA Serverless SQL是基于目前托管于Linux基金会之下的PrestoDB打造的云原生数据湖引擎,Alibaba同时也是Presto基金会成员之一,一直在贡献优化Presto。PrestoDB引擎本身具有优秀的特性:

  • 全内存计算带来的极致速度。
  • 支持完整SQL语义带来的强大表达力。
  • 易用的插件机制使得我们可以对任何数据源进行关联查询。
  • 强大的社区使得我们使用之后没有后顾之忧。

不过社区PrestoDB是单租户的一个引擎,它假定你是在一个公司内部使用,因此算力隔离、高可用等等方面没有过多投入,这使得要直接使用它来作为云原生服务的引擎存在几个问题:

  • 一个用户如果提交大量大查询将可能占用集群所有资源,导致其它用户无法使用。
  • 单Coordinator使得整个服务的可用性无法得到保证。

我们做了一系列的优化、改造使得它可以云原生的形态服务所有的用户,今天着重介绍多租户隔离技术以及多Coordinator两个主要的特性。

首先我们看一下DLA Serverless SQL的整体架构:

image.png

我们在核心的PrestoDB集群周边建设了诸如接入层、统一元数据等等服务来使得用户可以用得稳定、用得便利,下面我们将在多租户隔离技术和多Coordinator技术的介绍中详细剖析。

1 多租户隔离技术

PrestoDB原生是有资源组的支持,它可以支持在不同资源组间做一定程度的CPU、内存的限制,但是它有一些问题使得我们无法基于它来实现计算力的隔离:

  • 全局调度层面:即使一个租户使用了过多的计算力资源也不会及时被惩罚,只有新查询会被Block。
  • Worker调度层面:所有租户的Split是在同一个队列里面进行调度,一个租户如果有过多Split会影响其它租户。

我们的计算力多租户方案如下:

image.png

我们在集群中引入了一个ResourceManager的模块用于从所有的Coordinator收集所有租户的资源使用信息,ResourceManager把收集到的资源使用信息跟我们预设的计算力的阈值进行对比,计算出哪些租户应该被惩罚,然后把这个惩罚信息通知到所有的Worker。Worker在进行调度的时候会参照ResourceManager通知过来的惩罚信息决定哪些租户的查询得到调度,哪些租户的查询不进行调度。这样不同的租户之间算力就会得到隔离,我们测试了如果有一个租户过量使用资源,它会在最长1.3秒之内得到惩罚,从而释放资源给其它租户,而社区默认版本的“惩罚”要等到租户所有的查询执行完成才会到来。只有元数据和计算力得到隔离,我们才能放心用一个集群来服务我们所有的用户。

2 Multi-Coordinator技术

社区版本的Presto里面,Coordinator是一个单点,它会带来两个方面的问题:

可用性隐患: 一旦Coordinator宕机、整个集群将不可用达5到10分钟。

无法实现无缝升级,升级过程中影响所有用户的查询使用。

我们采取了如下的架构方案:

image.png

首先我们在Presto的Coordinator之上放置了一个新的FrontNode模块,让用户连接到这个模块,而不是直接连接到我们底层的Coordinator,这样我们底层到底有多少个Coordinator,现在哪个Coordinator在给用户提供服务都对用户完全透明,这样架构上就比较灵活,从而方便我们在底层对Coordinator进行扩展。

FrontNode在接收到用户的查询之后会把请求按照Round Robin的方式发送给底层的多个Coordinator,这样多个Coordinator就可以分担压力,但是整个集群还是有一些全局的事情要有单个Coordinator来做,比如Presto的Worker状态监控、OOM Killer等等,因此我们引入了一个Zookeeper来做Coordinator选主的事情,选主之后主Coordinator的职责会跟社区的Presto类似:做全局的Worker状态监控、OOM Killer以及执行分配给它的查询;从Coordinator的职责则比较轻量级: 只负责执行分配给它的查询。

如果其中一个Coordinator因为任何问题宕机,Zookeeper会在秒级发现这个问题并重新选主,用户受到影响的查询只要重试即可。而且我们正在做的一个尝试是做查询的自动重试,对于确定是系统原因造成的失败我们做自动重试,这样一个Coordinator对用户的影响将会很小。

而有了多Coordinator的架构,我们要实现无缝升级就非常简单了,我们在升级的时候只要主动把某个Coordinator/Worker从集群中摘除,进行升级,升级完成再加入集群,客户可以毫不感知,因为在升级过程中始终有一个正常工作的集群在给用户提供服务, 比如我们在升级从Coordinator的时候,整个集群情况如下:

image.png

通过诸如多租户隔离技术、多Coordinator架构等等优化,我们基于PrestoDB打造了可以服务所有的用户的阿里云云原生数据湖Serverless SQL引擎。

六 云原生数据湖端到端最佳实践

image.png

如上图方案所示,DLA提供了端到端的方案,面对OSS数据开放性带来的管理及入湖困难,DLA数据湖管理,帮助您一站式构建安全数据湖。

  • 提供统一开放的Meta服务对OSS数据进行管理,支持库表权限。
  • 利用元数据爬取功能,可以一键创建OSS上的元数据信息,轻松自动识别CSV/JSON/Parquet等格式,建立好库表信息,方便后续计算引擎使用。
  • 一键将RDS/PolarDB/MongoDB等数据库的数据同步到OSS存储当中,搭建冷热数据分层的业务架构,对多源海量数据进行数据洞察分析。
  • 支持流式构建Hudi格式,满足T+10分钟的延迟要求,极大提升分析的端到端的延迟。
  • Serverless化SQL分析,帮助您即开即用数据湖。用户无需购买任何资源,即可运行标准的SQL语法查询数据。
  • 支持对数据湖存储OSS Cache加速,提升10倍的性能。
  • 支持RDS、PolarDB、ADB、MongoDB数据十种数据源的分析。
  • 对比传统的Presto、Impala方案提升10x的性价比提升。
  • Serverless化Spark计算,帮助您自主玩转数据湖。用户无需购买任何资源,即可使用云原生的Spark服务,支持OSS 数PB的数据清洗、机器学习、用户可编程,玩转数据湖。
  • 每分钟可弹出500个节点参与计算。
  • 对比传统的自建Spark方案提升3x的性价比提升。

由于DLA涉及较多的技术点,本文讲述了部分技术细节,更多欢迎关注云原生数据湖分析DLA:
https://www.aliyun.com/product/datalakeanalytics

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
目录
相关文章
|
分布式计算 Kubernetes 流计算
Iceberg+Amoro+CloudEon体验云原生数据湖
通过使用CloudEon、Iceberg、Flink、Spark和Amoro,您可以轻松地在Kubernetes上构建一个强大的大数据基础环境。
499 0
|
存储 人工智能 Cloud Native
耳朵经济快速增长背后,喜马拉雅数据价值如何释放 | 创新场景
喜马拉雅和阿里云的合作,正走在整个互联网行业的最前沿,在新的数据底座之上,喜马拉雅的AI、大数据应用也将大放光彩。本文摘自《云栖战略参考》
46847 5
耳朵经济快速增长背后,喜马拉雅数据价值如何释放 | 创新场景
|
6月前
|
存储 分布式计算 DataWorks
【阿里云云原生专栏】云原生下的数据湖建设:阿里云MaxCompute与DataWorks解决方案
【5月更文挑战第26天】在数字化时代,数据成为企业创新的关键。阿里云MaxCompute和DataWorks提供了一种构建高效、可扩展数据湖的解决方案。数据湖允许存储和分析大量多格式数据,具备高灵活性和扩展性。MaxCompute是PB级数据仓库服务,擅长结构化数据处理;DataWorks则是一站式大数据协同平台,支持数据集成、ETL和治理。通过DataWorks收集数据,MaxCompute存储和处理,企业可以实现高效的数据分析和挖掘,从而提升业务洞察和竞争力。
461 0
|
6月前
|
存储 人工智能 运维
【云原生企业级数据湖:打破数据孤岛,优化存储成本】
【云原生企业级数据湖:打破数据孤岛,优化存储成本】 随着大数据时代的到来,企业对于数据的处理和存储需求日益增长。如何有效地存储和管理大量数据,同时降低运维成本,成为了企业面临的一大挑战。盛通教育的云原生企业级数据湖方案,正是为了解决这一问题而设计的。
211 1
|
SQL Cloud Native 关系型数据库
快速构建轻量级云原生数据湖服务(二)
快速构建轻量级云原生数据湖服务(二)
249 0
|
SQL 存储 分布式计算
快速构建轻量级云原生数据湖服务(一)
快速构建轻量级云原生数据湖服务(一)
274 0
|
存储 SQL 缓存
阿里云EMR 2.0:定义下一代云原生智能数据湖
本次分享主要介绍了阿里云云原生数据湖分析解决方案的三个核心要素:全托管,湖存储;一站式,湖管理;多模态,湖计算。
29762 1
阿里云EMR 2.0:定义下一代云原生智能数据湖
|
存储 Cloud Native 对象存储
《阿里云云原生数据湖体系全解读》电子版地址
《阿里云云原生数据湖体系全解读》是阿里云首次发布云原生数据湖体系,基于对象存储OSS、数据湖构建Data Lake Formation和E-MapReduce产品的强强组合,提供存储与计算分离架构下,涵盖湖存储、湖加速、湖管理和湖计算的企业级数据湖解决方案。
150 0
《阿里云云原生数据湖体系全解读》电子版地址
|
存储 Cloud Native 对象存储
《阿里云云原生数据湖体系全解读》电子版下载地址
《阿里云云原生数据湖体系全解读》是阿里云首次发布云原生数据湖体系,基于对象存储OSS、数据湖构建Data Lake Formation和E-MapReduce产品的强强组合,提供存储与计算分离架构下,涵盖湖存储、湖加速、湖管理和湖计算的企业级数据湖解决方案。
175 0
《阿里云云原生数据湖体系全解读》电子版下载地址
|
存储 Cloud Native 对象存储
当云原生成为一种显学,对象存储和数据湖如何顺势而为
本文主要介绍云原生以及对象存储如何支持云原生。
539 0
当云原生成为一种显学,对象存储和数据湖如何顺势而为
下一篇
无影云桌面