基于生成式物理引擎的AI模型训练方法论
本文探讨了基于生成式物理引擎的AI模型训练方法论,旨在解决传统数据采集高成本、低效率的问题。生成式物理引擎结合物理建模与生成模型(如GAN、Diffusion),可模拟现实世界的力学规律,生成高质量、多样化的虚拟数据。文章介绍了其关键技术,包括神经网络物理建模、扩散模型场景生成及强化学习应用,并分析了其在机器人学习、数据增强和通用智能体训练中的实践价值。未来,随着可微物理引擎、跨模态生成等技术发展,生成式物理引擎将助力AI从静态监督学习迈向动态交互式世界建模,推动通用人工智能的实现。