JindoFS缓存加速数据湖上的机器学习训练

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: JindoFS提供了一个计算侧的分布式缓存系统,可以有效利用计算集群上的本地存储资源(磁盘或者内存)缓存OSS上的热数据,从而减少对OSS上数据的反复拉取,消耗网络带宽。

背景介绍

近些年,机器学习领域快速发展,广泛应用于各行各业。对于机器学习领域的从业人员来说,充满了大量的机遇和挑战。Tensorflow、PyTorch等深度学习框架的出现,使开发者能够轻松地构建和部署机器学习应用。随着近些年云计算技术的不断成熟,越来越多的人接受将他们的开发、生产服务搬到云上平台,因为云环境在计算成本、规模扩展上比传统平台有显著的优势。云上平台为了达到弹性、节约成本,通常采用计算存储分离的解决方案。使用对象存储构建数据湖,可以降低成本、存储海量数据。在机器学习这个场景下,尤其适合将训练数据存储在数据湖上。

将训练数据存储在数据湖上具有以下优势:

1.不需要将数据提前同步到训练节点。传统方式,我们需要将数据提前导入到计算节点的本地磁盘。而如果将数据存储在对象存储上,我们可以直接读取数据进行训练,减少准备工作。

2.可以存储更大的训练数据,不再受限于计算节点本地磁盘大小。对于深度学习,拥有更多的数据,往往能取得更好的训练效果。

3.计算资源可以弹性扩缩容,节约成本。机器学习通常使用使用更多核数的CPU或高端GPU,较为昂贵,对象存储的成本就相对较低。将训练数据存储在数据湖上,可以与计算资源解耦。计算资源可以按需付费,随时释放,达到节省成本的目的。

然而,这种方式同时存在着一些问题和挑战:

1.远端拉取数据的延迟和带宽无法随着计算资源线性扩展。硬件计算能力在不断发展,利用GPU进行计算可以取得更快的训练速度。使用云上弹性计算ECS、容器服务可以快速调度起大规模的计算资源。访问对象存储需要走网络,得益于网络技术的发展,我们访问对象存储有一个高速网络,即便如此,对象存储的网络延时和带宽无法随着集群规模线性扩展,可能会成为瓶颈,限制了训练速度。在计算存储分离架构下,如何高效地访问到这些数据,成为了一个巨大的挑战。

2.需要更加便捷的通用的数据访问方式。深度学习框架如TensorFlow对于GCS、HDFS支持较为友好,而对于诸多第三方对象存储的支持上较为滞后。而POSIX接口是一种更自然友好的方式,使用类似于本地磁盘一样的方式访问数据,大大简化了开发者对存储系统的适配工作。

为了解决数据湖上机器学习训练常规方案存在的上述问题,JindoFS 针对这种场景提供了缓存加速优化方案。

基于JindoFS缓存加速的训练架构方案

JindoFS提供了一个计算侧的分布式缓存系统,可以有效利用计算集群上的本地存储资源(磁盘或者内存)缓存OSS上的热数据,从而减少对OSS上数据的反复拉取,消耗网络带宽。

6.png

内存缓存

对于深度学习,我们可以选择计算能力更强的GPU机型,来获取更快的训练速度。此时需要高速的内存吞吐,才能让GPU充分跑满。此时我们可以使用JindoFS基于内存搭建分布式高速缓存。当整个集群的所有内存加起来足以支撑整个数据集时(除去任务本身所需内存量),我们就可以利用内存缓存以及本地高速网络,来提供高的数据吞吐,加快计算速度。

磁盘缓存

对于一些机器学习场景,训练数据的规模超过了内存所能承载的大小,以及训练所需的CPU/GPU能力要求没有那么高,而要求数据访问有较高的吞吐。此时计算的瓶颈会受限于网络带宽压力。因此我们可以搭建使用本地SSD作为缓存介质的JindoFS分布式缓存服务,利用本地存储资源缓存热数据,来达到提高训练速度的效果。

FUSE接口

JindoFS包含了FUSE客户端,提供了简便的、熟悉的数据访问方式。通过FUSE程序将JindoFS集群实例映射到本地文件系统,就可以像访问本地磁盘文件一样,享受到JindoFS带来的加速效果。

实战:搭建Kubernetes + JindoFS + Tensorflow训练集群

1、创建kubernetes集群

我们前往阿里云-容器服务,创建一个Kubernetes集群。

7.png

2、安装JindoFS服务

2.1 前往容器服务->应用目录,进入“JindoFS”安装配置页面。

8.png

2.2 配置参数

完整的配置模板可以参考容器服务-应用目录-jindofs安装说明
配置OSS Bucket和AK,参考文档使用JFS Scheme的部署方式。我们需要修改以下配置项:

jfs.namespaces: test
jfs.namespaces.test.mode :  cache
jfs.namespaces.test.oss.uri :  oss://xxx-sh-test.oss-cn-shanghai-internal.aliyuncs.com/xxx/k8s_c1
jfs.namespaces.test.oss.access.key :  xx
jfs.namespaces.test.oss.access.secret :  xx
AI 代码解读

通过这些配置项,我们创建了一个名为test的命名空间,指向了chengli-sh-test这个OSS bucket的xxx/k8s_c1目录。后续我们通过JindoFS操作test命名空间的时候,就等同于操作该OSS目录。

2.3 安装服务

8.png

1.验证安装成功

# kubectl get pods
NAME                               READY   STATUS      RESTARTS   AGE
jindofs-fuse-267vq                 1/1     Running     0          143m
jindofs-fuse-8qwdv                 1/1     Running     0          143m
jindofs-fuse-v6q7r                 1/1     Running     0          143m
jindofs-master-0                   1/1     Running     0          143m
jindofs-worker-mncqd               1/1     Running     0          143m
jindofs-worker-pk7j4               1/1     Running     0          143m
jindofs-worker-r2k99               1/1     Running     0          143m
AI 代码解读

2.在宿主机上访问/mnt/jfs/目录,即等同于访问JindoFS的文件

ls /mnt/jfs/test/
15885689452274647042-0  17820745254765068290-0  entrypoint.sh
AI 代码解读

3.安装kubeflow(arena)

**Kubeflow 是开源的基于Kubernetes云原生AI平台,用于开发、编排、部署和运行可扩展的便携式机器学习工作负载。Kubeflow支持两种TensorFlow框架分布式训练,分别是参数服务器模式和AllReduce模式。基于阿里云容器服务团队开发的Arena,用户可以提交这两种类型的分布式训练框架。
我们参照github repo上的使用文档进行安装。
**

4. 启动TF作业

arena submit mpi \
--name job-jindofs\
 --gpus=8 \
 --workers=4 \
 --working-dir=/perseus-demo/tensorflow-demo/ \
 --data-dir /mnt/jfs/test:/data/imagenet \
 -e DATA_DIR=/data/imagenet -e num_batch=1000 \
 -e datasets_num_private_threads=8  \
 --image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/perseus-benchmark-dawnbench-v2:centos7-cuda10.0-1.2.2-1.14-py36 \
 ./launch-example.sh 4 8
AI 代码解读

本文中,我们提交了一个ResNet-50模型作业,使用的是大小144GB的ImageNet数据集。数据以TFRecord格式存储,每个TFRecord大小约130MB。模型作业和ImageNet数据集都可以在网上轻松找到。这些参数中,/mnt/jfs/是通过JindoFS FUSE挂载到宿主机的一个目录,test是一个namespace,对应一个oss bucket。我们使用--data-dir将这个目录映射到容器内的/data/imagenet目录,这样作业就可以读取到OSS的数据了,对于读取过的数据,会自动缓存到JindoFS集群本地。

总结

通过JindoFS的缓存加速服务,只需要读取一遍数据,大部分的热数据将缓存到本地内存或磁盘,深度学习的训练速度可以得到显著提高。对于大部分训练,我们还可以使用预加载的方式先将数据加载到缓存中,来加快下一次训练的速度。


更多数据湖技术相关的文章请点击:[阿里云重磅发布云原生数据湖体系
](https://developer.aliyun.com/article/772298?spm=a2c6h.12873581.0.dArticle772298.28042b0fFZNGve&groupCode=datalakeformation)


更多数据湖相关信息交流请加入阿里巴巴数据湖技术钉钉群
数据湖钉群.JPG

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
打赏
0
0
0
0
1393
分享
相关文章
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
334 1
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
110 32
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
115 2
数据的存储--Redis缓存存储(二)
MHA2MLA:0.3%数据微调!复旦团队开源推理加速神器,KV缓存狂降96.87%
MHA2MLA是复旦大学、华东师范大学、上海AI Lab等机构联合推出的数据高效微调方法,通过引入多头潜在注意力机制(MLA),显著优化基于Transformer的LLM推理效率,降低推理成本。
149 1
MHA2MLA:0.3%数据微调!复旦团队开源推理加速神器,KV缓存狂降96.87%
|
8月前
|
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
137 5
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey
大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey
149 2
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
212 1
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问