非容器应用与K8s工作负载的服务网格化实践-7 基于ASM的POD和VM可观测性实践

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 服务网格的可观测性能力是通过Sidecar实现的,对于业务服务源代码来说是近零侵入的。可观测性包括数据采集、数据存储、数据展示和聚合分析。主要有三个维度:Metrics、Logging、Tracing,分别用于可聚合数据、离散事件、请求链路的可观测性。相应地,阿里云生态下,ASM打通了ARMS(https://www.aliyun.com/product/arms)、Log Service(https://www.aliyun.com/product/sls)、TracingAnalysis(https://www.aliyun.com/product/xtrace),供用户使用服务网格的可观

服务网格的可观测性能力是通过Sidecar实现的,对于业务服务源代码来说是近零侵入的。可观测性包括数据采集、数据存储、数据展示和聚合分析。主要有三个维度:Metrics、Logging、Tracing,分别用于可聚合数据、离散事件、请求链路的可观测性。相应地,阿里云生态下,ASM打通了ARMS(https://www.aliyun.com/product/arms)、Log Service(https://www.aliyun.com/product/sls)、TracingAnalysis(https://www.aliyun.com/product/xtrace),供用户使用服务网格的可观测性能力。

本篇只涉及请求链路,这个维度最容易展示VM中非容器应用网格化带来的增益,以抛砖引玉。

1 近零侵入

本篇示例容器中的微服务源代码依然使用http_springboot_demo。抛开云原生,单看这个springboot开发的微服务,如果要实现全链路请求的采集,需要有一行主动打点的日志,维护并记录requestId作为全链路唯一键的请求和响应信息。这个信息由日志采集agent上报,然后由日志系统根据requestid提供查询和聚合。代码示意如下:

@GetMapping(path = "/hello/{msg}")
public String sayHello(@PathVariable String msg) {
    String url = "http://" + HTTP_HELLO_BACKEND + ":8001/hello/" + msg;
    String backServiceResult = helloService.sayHello(url);
    String result = HELLO + " " + msg;
    log.info("打点日志...")
    return result + backServiceResult;
}
public String sayHello(String url) {
    Request request = new Request.Builder()
            .url(url)
            .build();
    try (Response response = client.newCall(request).execute()) {
      ...

这个微服务网格化后,微服务源代码不再需要主动打点,相应地也无需维护全链路唯一键。这些工作Sidecar都已经实现了,而且是基于CNCF云原生生态下的OpenTracing(/OpenTelemetry)标准实现的,无论从专业性还是标准上,都优于业务代码自己打点。而这个『近零侵入』的地方就是“propagate tracing headers”——需要业务代码传递如下header到下游。仅此而已。代码示意如下:

@GetMapping(path = "/hello/{msg}")
public String sayHello(@PathVariable String msg, @RequestHeader Map<String, String> headers) {
    String url = "http://" + HTTP_HELLO_BACKEND + ":8001/hello/" + msg;
    String backServiceResult = helloService.sayHello(url, headers);
    String result = HELLO + " " + msg;
    return result + backServiceResult;
}

上面这段代码,较之前述一段,少了第6行主动打点,多了RequestHeader参数。传递给下游的代码示意如下:

public String sayHello(String url, Map<String, String> headers) {
    Map<String, String> tracingHeaders = buildTracingHeaders(headers,
            "x-request-id",
            "x-b3-traceid",
            "x-b3-spanid",
            "x-b3-parentspanid",
            "x-b3-sampled",
            "x-b3-flags",
            "x-ot-span-context");
    Request request = new Request.Builder()
            //propagate tracing headers
            .headers(Headers.of(tracingHeaders))
            .url(url)
            .build();
    try (Response response = client.newCall(request).execute()) {

之所以说是『近零侵入』是因为RequestHeader参数在多数业务代码中本身就存在,就算不存在也可以直接从spring容器context中直接拿到,因此侵入的代价就是构造并传递上面代码段中的header map。而这带来的好处是省去了主动打点代码及其维护成本。

2 搭建实验环境

本篇实验继续使用第2篇的组件拓扑,如下图所示。本篇的重点是确认完整的端到端链路的可追踪性。

由于Sidecar负责上报链路追踪的数据,业务代码无需感知具体的链路追踪系统。ASM支持阿里云链路追踪产品TracingAnalysis,也支持用户自建Zipkin。对于虚拟机的网格化链路追踪而言,只需在启动参数中提供链路追踪系统即可。余文详述。

TracingAnalysis

由于ASM已经在数据平面创建了TracingAnalysis相关的POD,我们只需为虚拟机提供一个链路追踪服务即可。示意如下:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: tracing
    component: zipkin
  name: zipkin-slb
  namespace: istio-system
spec:
  ports:
    - name: zipkin
      port: 9411
      protocol: TCP
      targetPort: 9411
  selector:
    app: tracing
    component: zipkin
  type: LoadBalancer
k get svc zipkin-slb -n istio-system
NAME         TYPE           CLUSTER-IP     EXTERNAL-IP      PORT(S)          AGE
zipkin-slb   LoadBalancer   172.19.10.62   39.107.229.139   9411:31170/TCP   178m

通过如下命令模拟dns将链路追踪服务提供给虚拟机:

zipkin_clusterIp=$(k get svc zipkin-slb -n istio-system | grep zipkin | awk -F ' ' '{print $4}')
echo "$zipkin_clusterIp zipkin.istio-system" >dns_record

VMS=("$VM_PUB_1" "$VM_PUB_2" "$VM_PUB_3")
for vm in "${VMS[@]}"; do
  ssh root@"$vm" "sed -i '/zipkin.istio-system/d' /etc/hosts"
  ssh root@"$vm" "cat >> /etc/hosts" <dns_record
done
rm -rf dns_record

最后在VM中向/var/lib/istio/envoy/sidecar.env追加一行:

ISTIO_AGENT_FLAGS="--zipkinAddress zipkin.istio-system:9411 --serviceCluster vm1-hello2-en"

Zipkin

自建zipkin的方式参见文档:向自建系统导出ASM链路追踪数据,其他步骤与TracingAnalysis一致。

实验环境

与第2篇类似,通过如下脚本启动本篇实验实例的相关各组件:

sh asm/ack.deploy.sh
sh asm/asm.deploy.sh
sh asm/asm_traffic_shift.sh
sh asm/dns.fake.sh

3 链路追踪验证

使用如下脚本发起端到端调用:

IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
for i in {1..1000}; do
  resp=$(curl -s "$IP":8008/hello/eric)
  echo "$resp" >>test_traffic_shift_result
done

全局拓扑

TracingAnalysis提供了全局拓扑,通过这个拓扑图,我们可以一目了然地看到VM中的应用和ack容器中的POD一样,作为端到端链路上的一个endpoint存在。示意如下。
7-1-xtrace-topology.png

Tracing

登录TracingAnalysis或者自建zipkin系统查看tracing。如下图所示,VM中的Sidecar上报了hello2应用链路的inboundoutbound数据,与hello1/hello3 POD形成完整的调用链路。

7-2-xtrace-tracing.png

全链路聚合

通过TracingAnalysis的全链路聚合,可以完整地看到hello2的三个版本vm1-hello2-en/vm2-hello2-fr/vm3-hello2-es链路追踪数据的聚合信息。

7-3-xtrace-aggregation.png

到此,基于ASM的POD和VM可观测性实践验证完毕。通过本篇实验,我们可以看到,非容器应用网格化后直接具备了强大的服务可观测性能力。

由于时间和精力关系,本系列到此结束。希望在云原生之下,服务网格能为我们的产品带来一些不同和惊喜。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
13天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
55 2
|
13天前
|
监控 持续交付 Docker
Docker 容器化部署在微服务架构中的应用有哪些?
Docker 容器化部署在微服务架构中的应用有哪些?
|
13天前
|
监控 持续交付 Docker
Docker容器化部署在微服务架构中的应用
Docker容器化部署在微服务架构中的应用
|
13天前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
46 1
|
21天前
|
JavaScript 持续交付 Docker
解锁新技能:Docker容器化部署在微服务架构中的应用
【10月更文挑战第29天】在数字化转型中,微服务架构因灵活性和可扩展性成为企业首选。Docker容器化技术为微服务的部署和管理带来革命性变化。本文探讨Docker在微服务架构中的应用,包括隔离性、可移植性、扩展性、版本控制等方面,并提供代码示例。
55 1
|
23天前
|
Kubernetes 负载均衡 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第27天】Kubernetes(简称K8s)是云原生应用的核心容器编排平台,提供自动化、扩展和管理容器化应用的能力。本文介绍Kubernetes的基本概念、安装配置、核心组件(如Pod和Deployment)、服务发现与负载均衡、网络配置及安全性挑战,帮助读者理解和实践Kubernetes在容器编排中的应用。
68 4
|
24天前
|
Kubernetes 监控 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第26天】随着云计算技术的发展,容器化成为现代应用部署的核心趋势。Kubernetes(K8s)作为容器编排领域的佼佼者,以其强大的可扩展性和自动化能力,为开发者提供了高效管理和部署容器化应用的平台。本文将详细介绍Kubernetes的基本概念、核心组件、实践过程及面临的挑战,帮助读者更好地理解和应用这一技术。
58 3
|
30天前
|
JSON Kubernetes 容灾
ACK One应用分发上线:高效管理多集群应用
ACK One应用分发上线,主要介绍了新能力的使用场景
|
1月前
|
Kubernetes 监控 开发者
专家级实践:利用Cloud Toolkit进行微服务治理与容器化部署
【10月更文挑战第19天】在当今的软件开发领域,微服务架构因其高可伸缩性、易于维护和快速迭代的特点而备受青睐。然而,随着微服务数量的增加,管理和服务治理变得越来越复杂。作为阿里巴巴云推出的一款免费且开源的开发者工具,Cloud Toolkit 提供了一系列实用的功能,帮助开发者在微服务治理和容器化部署方面更加高效。本文将从个人的角度出发,探讨如何利用 Cloud Toolkit 来应对这些挑战。
35 2
|
1月前
|
Kubernetes 持续交付 Docker
探索DevOps实践:利用Docker与Kubernetes实现微服务架构的自动化部署
【10月更文挑战第18天】探索DevOps实践:利用Docker与Kubernetes实现微服务架构的自动化部署
84 2

相关产品

  • 容器服务Kubernetes版
  • 下一篇
    无影云桌面