非容器应用与K8s工作负载的服务网格化实践-6 基于ASM的VM应用动态落迁实践

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 在完成了POD和VM之间互访验证后,本篇将进入VM中,重点关注两个常用的流量管理能力:- 应用通过标签进行分组- 每个分组的多个副本可以动态落组和迁出

在完成了POD和VM之间互访验证后,本篇将进入VM中,重点关注两个常用的流量管理能力:

  • 应用通过标签进行分组
  • 每个分组的多个副本可以动态落组和迁出

本篇示例的拓扑如下图所示。ack中部署上游服务hello1,请求下游服务hello2。在4个ecs节点上,各部署了一个hello2应用,其中两个为en版本,与hello1之间的通信使用蓝线表示;另外两个为fr版本,与hello1之间的通信使用绿线表示。

6-1-workload-blue-green.png

1 搭建实验环境

部署hello1 POD

alias k="kubectl --kubeconfig $USER_CONFIG"
k apply -f yaml/hello1-deploy.yaml
AI 代码解读

部署hello2 app

在 vm1/vm2两个ecs节点上启动如下docker container,作为group1

sh sh/ssh1.sh

docker run \
--rm \
--network host \
--name http_v1 \
registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v1:1.0.1
AI 代码解读

在 vm3/vm4两个ecs节点上启动如下docker container,作为group2

sh sh/ssh3.sh

docker run \
--rm \
--network host \
--name http_v2 \
registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v2:1.0.1
AI 代码解读

部署hello2 WorkloadEntry

MESH_ID=$(head -n 1 "$MESHID_CONFIG")
aliyun servicemesh AddVmAppToMesh \
  --ServiceMeshId "$MESH_ID" \
  --Namespace vm-blue-green \
  --ServiceName hello2-svc \
  --Ips "$VM_PRI_1","$VM_PRI_2","$VM_PRI_3","$VM_PRI_4" \
  --Ports http:8001 \
  --Labels app=http-workload
echo "done"
AI 代码解读

为4个WorkloadEntry增加version标签,v1/v2的设置为v1,v3/v4的设置为v2

spec:
  address: 192.168.0.170
  labels:
    app: http-workload
    version: v1
AI 代码解读

2 蓝绿部署验证

hello2 VirtualService

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  namespace: hello-grouping
  name: hello2-vs
spec:
  hosts:
    - hello2-svc
  http:
    - name: http-route
      match:
        - uri:
            prefix: /hello
      route:
        - destination:
            host: hello2-svc
            subset: v1
          weight: 50
        - destination:
            host: hello2-svc
            subset: v2
          weight: 50
AI 代码解读

hello2 DestinationRule

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  namespace: hello-grouping
  name: hello2-dr
spec:
  host: hello2-svc
  subsets:
    - name: v1
      labels:
        version: v1
      trafficPolicy:
        loadBalancer:
          simple: ROUND_ROBIN
    - name: v2
      labels:
        version: v2
      trafficPolicy:
        loadBalancer:
          simple: ROUND_ROBIN
AI 代码解读

轮询验证

hello1_pod=$(k get pod -l app=hello1-deploy -n hello-grouping -o jsonpath={.items..metadata.name})

verify_in_loop() {
  for i in {1..8}; do
    echo ">$i test hello2-svc.hello-grouping.svc.cluster.local"
    resp=$(k exec "$hello1_pod" -c hello-v1-deploy -n hello-grouping -- \
      curl -s hello2-svc.hello-grouping.svc.cluster.local:8001/hello/eric)
    if [[ "no healthy upstream" == $resp ]]; then
      echo "stop, no healthy upstream."
      exit
    fi
    echo "$resp"
  done
}

m get workloadentry -n hello-grouping -o wide
verify_in_loop
AI 代码解读

预期的结果如下所示。流量转移首先会按照group间(v1v2)的比例配置进行,进入group后会按负载均衡策略(ROUND_ROBIN)进行路由。

...
>5 test hello2-svc.hello-grouping.svc.cluster.local
Hello eric(192.168.0.171)
>6 test hello2-svc.hello-grouping.svc.cluster.local
Hello eric(192.168.0.170)
>7 test hello2-svc.hello-grouping.svc.cluster.local
Bonjour eric(192.168.0.172)
>8 test hello2-svc.hello-grouping.svc.cluster.local
Bonjour eric(192.168.0.198)
AI 代码解读

3 应用落迁验证

当前group1和group2各有2个实例,我们按如下顺序动态删除和增加workloadentry并验证流量:

  • 将vm4从group2中迁出,使group1和group2节点比例为2:1
  • 将vm2从group1中迁出,使group1和group2节点比例为1:1
  • 将vm4落入group2,使group1和group2节点比例为1:2
  • 将vm2落入group1,使group1和group2节点比例为2:2
hello1_pod=$(k get pod -l app=hello1-deploy -n hello-grouping -o jsonpath={.items..metadata.name})
echo "1 Test blue-green 2:1"
m delete workloadentry mesh-expansion-hello2-svc-4 -n hello-grouping
m get workloadentry -n hello-grouping -o wide
verify_in_loop

echo "2 Test blue-green 1:1"
m delete workloadentry mesh-expansion-hello2-svc-2 -n hello-grouping
m get workloadentry -n hello-grouping -o wide
verify_in_loop

echo "3 Test blue-green 1:2"
m apply -f yaml/wl4.yaml
m get workloadentry -n hello-grouping -o wide
verify_in_loop

echo "4 Test blue-green 2:2"
m apply -f yaml/wl2.yaml
m get workloadentry -n hello-grouping -o wide
verify_in_loop
AI 代码解读
verify_in_loop() {
  echo >test_traffic_result
  for i in {1..100}; do
    resp=$(k exec "$hello1_pod" -c hello-v1-deploy -n hello-grouping -- curl -s hello2-svc.hello-grouping.svc.cluster.local:8001/hello/eric)
    if [[ "no healthy upstream" == $resp ]]; then
      echo "stop, no healthy upstream."
      rm -f test_traffic_result
      exit
    fi
    echo "$resp" >>test_traffic_result
  done
  echo "result:"
  sort test_traffic_result | grep -v "^[[:space:]]*$" | uniq -c | sort -nrk1
  rm -f test_traffic_result
}
AI 代码解读

期待的结果如下。

1 Test blue-green 2:1
workloadentry.networking.istio.io "mesh-expansion-hello2-svc-4" deleted
NAME                          AGE
mesh-expansion-hello2-svc-1   28m
mesh-expansion-hello2-svc-2   64s
mesh-expansion-hello2-svc-3   28m
result:
  56 Bonjour eric(192.168.0.172)
  22 Hello eric(192.168.0.171)
  22 Hello eric(192.168.0.170)
AI 代码解读
2 Test blue-green 1:1
workloadentry.networking.istio.io "mesh-expansion-hello2-svc-2" deleted
NAME                          AGE
mesh-expansion-hello2-svc-1   28m
mesh-expansion-hello2-svc-3   28m
result:
  51 Bonjour eric(192.168.0.172)
  49 Hello eric(192.168.0.170)
AI 代码解读
3 Test blue-green 1:2
workloadentry.networking.istio.io/mesh-expansion-hello2-svc-4 created
NAME                          AGE
mesh-expansion-hello2-svc-1   29m
mesh-expansion-hello2-svc-3   29m
mesh-expansion-hello2-svc-4   0s
result:
  53 Hello eric(192.168.0.170)
  24 Bonjour eric(192.168.0.198)
  23 Bonjour eric(192.168.0.172)
AI 代码解读
4 Test blue-green 2:2
workloadentry.networking.istio.io/mesh-expansion-hello2-svc-2 created
NAME                          AGE
mesh-expansion-hello2-svc-1   29m
mesh-expansion-hello2-svc-2   1s
mesh-expansion-hello2-svc-3   29m
mesh-expansion-hello2-svc-4   37s
result:
  26 Hello eric(192.168.0.171)
  26 Hello eric(192.168.0.170)
  24 Bonjour eric(192.168.0.198)
  24 Bonjour eric(192.168.0.172)
AI 代码解读

到此,VM应用动态落迁实践验证完毕。通过本篇实验,我们可以掌握如何将VM应用进行分组,并根据实际情况,通过workload entry进行动态落组和迁出。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
六翁
+关注
目录
打赏
0
0
0
0
78624
分享
相关文章
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
容器化爬虫部署:基于K8s的任务调度与自动扩缩容设计
随着业务复杂度提升,传统定时任务和手工扩缩容难以满足高并发与实时性需求。本文对比两种基于 Kubernetes 的爬虫调度与扩缩容方案:CronJob+HPA 和 KEDA。从调度灵活性、扩缩容粒度、实现难度等维度分析,并提供 YAML+Python 示例。方案 A(CronJob+HPA)适合固定定时任务,配置简单;方案 B(KEDA)支持事件驱动,适合高并发与异步触发场景。根据实际需求可混合使用,优化资源利用与效率。
111 4
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
数据库数据恢复—Oracle ASM磁盘组故障数据恢复案例
Oracle数据库数据恢复环境&故障: Oracle ASM磁盘组由4块磁盘组成。Oracle ASM磁盘组掉线 ,ASM实例不能mount。 Oracle数据库故障分析&恢复方案: 数据库数据恢复工程师对组成ASM磁盘组的磁盘进行分析。对ASM元数据进行分析发现ASM存储元数据损坏,导致磁盘组无法挂载。

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多
    AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等

    登录插画

    登录以查看您的控制台资源

    管理云资源
    状态一览
    快捷访问