大数据算命系列之用机器学习评估你的相亲战斗力 | 《阿里云机器学习PAI-DSW入门指南》

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 害,想知道你的相亲战斗力是多少吗?动手体验数据科学,成为PAI-DSW探索者~你想要知道的都在这里!

点击即可参与机器学习PAI-DSW动手实验室

点击可下载完整电子书《阿里云机器学习PAI-DSW入门指南》
更多案例参考:
四步训练出自己的CNN手写识别模型
如何自己训练一个热狗识别模型
半小时验证语音降噪—贾扬清邀你体验快捷云上开发

大数据算命系列之用机器学习评估你的相亲战斗力

试爱情,80%准确率! 俗话说,名如其人,缘分就是人生的后半生,为了寻找真缘分的大有人在,因此也就有了姓名缘分测试。 您现在是不是也正在心动犹豫,也想要一个属于自己的名字配对缘分测试了呢?那就请您赶紧行动吧!" 以上这段话,你一定已经在很多个微信公众号的尾部,电视节目之间的广告以及奇奇怪怪的小网站上看到过了吧。

你一定很好奇,这个缘分测试背后到底是不是有科学依据支撑的。

今天,作为数据科学老司机的我,虽然不能直接帮你测试你和某个特定的人直接的缘分,但是我们可以借助哥伦比亚大学多年研究相亲找对象的心血,通过几个简单的特征来评估你的相亲战斗力指数。

具体模型的测试页面在这里在正式开始实验之前,我们需要寻找一个简单好用方便上手的工具,这里我推荐一波阿里云的DSW探索者版,它对于个人开发者是免费的,同时还有免费的GPU资源可以使用,同时实验的数据还会免费保存30天。点击这里就可以使用,不需要购买,只要登陆就可以使用。今天我们就会通过这个工具来探索人性的奥秘,走进两性关系的神秘空间嘿嘿嘿。

整个实验的数据收集于一个从2002年到2004年的线下快速相亲的实验。在这个实验中,参与者被要求参加多轮与异性进行的快速相亲,每轮相亲持续4分钟,在4分钟结束后,参与者双方会被询问是否愿意与他们的对象再见面。只有当双方都回答了“是”的时候,这次相亲才算是配对成功。

同时,参与者也会被要求通过以量化的方式从 外观吸引力,真诚度,智商,风趣程度,事业心,兴趣爱好 这六个方向来评估他们的相亲对象。

这个数据集同时也包含了很多参加快速相亲的参与者的其他相关信息,比如地理位置,喜好,对于理想对象的偏好,收入水平,职业以及教育背景等等。关于整个数据集的具体特征描述可以参考这个文件。

本次我们实验的目的主要是为了找出,当一个人在参加快速相亲时,到底会有多高的几率能够遇到自己心动的人并成功牵手。

在我们建模分析探索人性的秘密之前,让我们先读入数据,来看看我们的数据集长什么样。

import pandas as pd
df = pd.read_csv('Speed Dating Data.csv', encoding='gbk')
print(df.shape)

通过观察,我们不难发现,在这短短的两年中,这个实验的小酒馆经历了8000多场快速相亲的实验。由此我们可以非常轻易的推断出,小酒馆的老板应该赚的盆满钵满(大雾)
然后从数据的宽度来看,我们会发现一共有接近200个特征。关于每个特征的具体描述大家可以参考这篇文档。然后我们再观察数据的完整度,看看是否有缺失数据。

percent_missing = df.isnull().sum() * 100 / len(df)
missing_value_df = pd.DataFrame({
    'column_name': df.columns,
    'percent_missing': percent_missing
})
missing_value_df.sort_values(by='percent_missing')

通过以上代码,我们不难发现,其实还有很多的特征是缺失的。这一点在我们后面做分析和建模的时候,都需要关注到。因为一旦一个特征缺失的数据较多,就会导致分析误差变大或者模型过拟合/精度下降。看完数据的完整程度,我们就可以继续往下探索了。
然后第一个问题就来了,在这8000多场的快速相亲中,到底有多少场相亲成功为参加的双方找到了合适的伴侣的?带着这个问题,我们就可以开始我们的第一个探索性数据分析。

# 多少人通过Speed Dating找到了对象
plt.subplots(figsize=(3,3), dpi=110,)
# 构造数据
size_of_groups=df.match.value_counts().values

single_percentage = round(size_of_groups[0]/sum(size_of_groups) * 100,2) 
matched_percentage = round(size_of_groups[1]/sum(size_of_groups)* 100,2) 
names = [
    'Single:' + str(single_percentage) + '%',
    'Matched' + str(matched_percentage) + '%']
 
# 创建饼图
plt.pie(
    size_of_groups, 
    labels=names, 
    labeldistance=1.2, 
    colors=Pastel1_3.hex_colors
)
plt.show()

image.png
从上边的饼图我们可以发现,真正通过快速相亲找到对象的比率仅有16.47%。
然后我们就迎来了我们的第二个问题,这个比率和参加的人的性别是否有关呢?这里我们也通过Pandas自带的filter的方式

df[df.gender == 0]

来筛选数据集中的性别。通过阅读数据集的文档,我们知道0代表的是女生,1代表的是男生。然后同理,我们执行类似的代码

# 多少女生通过Speed Dating找到了对象
plt.subplots(figsize=(3,3), dpi=110,)
# 构造数据
size_of_groups=df[df.gender == 0].match.value_counts().values # 男生只需要吧0替换成1即可

single_percentage = round(size_of_groups[0]/sum(size_of_groups) * 100,2) 
matched_percentage = round(size_of_groups[1]/sum(size_of_groups)* 100,2) 
names = [
    'Single:' + str(single_percentage) + '%',
    'Matched' + str(matched_percentage) + '%']
 
# 创建饼图
plt.pie(
    size_of_groups, 
    labels=names, 
    labeldistance=1.2, 
    colors=Pastel1_3.hex_colors
)
plt.show()

来找出女生和男生分别在快速相亲中找到对象的几率的。
女生的几率:
image.png
男生的几率:
image.png
不难发现,在快速相亲中,女生相比于男生还是稍微占据一些优势的。女生成功匹配的几率比男生成功匹配的几率超出了0.04。

然后第二个问题来了:是什么样的人在参加快速相亲这样的活动呢?真的都是大龄青年(年龄大于30)嘛?这个时候我们就可以通过对参加人群的年龄分布来做一个统计分析。

# 年龄分布
age = df[np.isfinite(df['age'])]['age']
plt.hist(age,bins=35)
plt.xlabel('Age')
plt.ylabel('Frequency')

image.png
不难发现,参加快速相亲的人群主要是22~28岁的群体。这点与我们的预期有些不太符合,因为主流人群并不是大龄青年。接下来的问题就是,年龄是否会影响相亲的成功率呢?和性别相比,哪个对于成功率的影响更大?这两个问题在本文就先埋下一个伏笔,不一一探索了,希望阅读文章的你能够自己探索。

但是这里可以给出一个非常好用的探索相关性的方式叫做数据相关性分析。通过阅读数据集的描述,我已经为大家选择好了一些合适的特征去进行相关性分析。这里合适的定义是指:1. 数据为数字类型,而不是字符串等无法量化的值。2.数据的缺失比率较低

date_df = df[[
    'iid', 'gender', 'pid', 'match', 'int_corr', 'samerace', 'age_o',
       'race_o', 'pf_o_att', 'pf_o_sin', 'pf_o_int', 'pf_o_fun', 'pf_o_amb',
       'pf_o_sha', 'dec_o', 'attr_o', 'sinc_o', 'intel_o', 'fun_o', 'like_o',
       'prob_o', 'met_o', 'age', 'race', 'imprace', 'imprelig', 'goal', 'date',
       'go_out', 'career_c', 'sports', 'tvsports', 'exercise', 'dining',
       'museums', 'art', 'hiking', 'gaming', 'clubbing', 'reading', 'tv',
       'theater', 'movies', 'concerts', 'music', 'shopping', 'yoga', 'attr1_1',
       'sinc1_1', 'intel1_1', 'fun1_1', 'amb1_1', 'attr3_1', 'sinc3_1',
       'fun3_1', 'intel3_1', 'dec', 'attr', 'sinc', 'intel', 'fun', 'like',
       'prob', 'met'
]]

# heatmap
plt.subplots(figsize=(20,15))
ax = plt.axes()
ax.set_title("Correlation Heatmap")
corr = date_df.corr()
sns.heatmap(corr, 
            xticklabels=corr.columns.values,
            yticklabels=corr.columns.values)

image.png
通过上面这张图这张相关性分析的热力图,我们可以先关注一些特别亮的和特别暗的点。比如我们可以发现,在 pf_o_att这个表示相亲对象给出的外观吸引力这个特征上,和其他相亲对象给出的评分基本都是严重负相关的,除了pf_o_fun这一特征。由此我们可以推断出两个点:
1、大家会认为外观更加吸引人的人在智商,事业心,真诚度上表现会相对较差。换句话说,可能就是颜值越高越浪

2、幽默风趣的人更容易让人觉得外观上有吸引力,比如下面这位幽默风趣的男士(大雾):

wbgkmumu1.JPG

然后我们再看看我们最关注的特征 match,和这一个特征相关性比较高的特征是哪几个呢?不难发现,其实就是'attr_o','sinc_o','intel_o','fun_o','amb_o','shar_o'这几个特征,分别是相亲对方给出的关于外观,真诚度,智商,风趣程度,事业线以及兴趣爱好的打分。接下来我们就可以根据这个来进行建模了。首先我们将我们的特征和结果列都放到一个Dataframe中,然后再去除含有空值的纪录。 最后我们再分为X和Y用来做训练。当然分为X,y之后,由于我们在最开始就发现只有16.47%的参与场次中成功匹配了,所以我们的数据有严重的不均衡,这里我们可以用SVMSMOTE来增加一下我们的数据量避免模型出现过度拟合。

# preparing the data
clean_df = df[['attr_o','sinc_o','intel_o','fun_o','amb_o','shar_o','match']]
clean_df.dropna(inplace=True)
X=clean_df[['attr_o','sinc_o','intel_o','fun_o','amb_o','shar_o',]]
y=clean_df['match']

oversample = imblearn.over_sampling.SVMSMOTE()
X, y = oversample.fit_resample(X, y)

# 做训练集和测试集分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y)

数据准备好之后,我们就可以进行模型的构建和训练了。通过以下代码,我们可以构建一个简单的逻辑回归的模型,并在测试集上来测试。

# logistic regression classification model
model = LogisticRegression(C=1, random_state=0)
lrc = model.fit(X_train, y_train)
predict_train_lrc = lrc.predict(X_train)
predict_test_lrc = lrc.predict(X_test)
print('Training Accuracy:', metrics.accuracy_score(y_train, predict_train_lrc))
print('Validation Accuracy:', metrics.accuracy_score(y_test, predict_test_lrc))

image.png
我们可以看到结果为0.83左右,这样我们就完成了一个预测在快速相亲中是否能够成功配对的机器学习模型。针对这个模型,数据科学老司机我还专门制作了一个小游戏页面,来测试你的相亲战斗力指数。 同时也欢迎你加入我们的DSW用户交流群,和我们一起交流/探索更多好玩又实用的机器学习/深度学习案例。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
10天前
|
存储 人工智能 数据管理
|
17天前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
68 23
|
15天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
100 15
|
3天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
3天前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
9天前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
35 4
|
2月前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
17天前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
17天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
53 2

相关产品

  • 人工智能平台 PAI