Spark和MapReduce任务计算模型

简介: 【前言:本文主要从任务处理的运行模式为角度,分析Spark计算模型,希望帮助大家对Spark有一个更深入的了解。同时拿MapReduce和Spark计算模型做对比,强化对Spark和MapReduce理解】

【前言:本文主要从任务处理的运行模式为角度,分析Spark计算模型,希望帮助大家对Spark有一个更深入的了解。同时拿MapReduce和Spark计算模型做对比,强化对Spark和MapReduce理解】

从整体上看,无论是Spark还是MapReduce都是多进程模型。如,MapReduce是由很多MapTask、ReduceTask等进程级别的实例组成的;Spark是由多个worker、executor等进程级别实例组成。但是当细分到具体的处理任务,MapReduce仍然是多进程级别,这一点在文章《详解MapReduce》(WeChat official account:大数据学习与分享)已有说明。而Spark处理任务的单位task是运行在executor中的线程,是多线程级别的。

对于多进程,我们可以很容易控制它们能够使用的资源,并且一个进程的失败一般不会影响其他进程的正常运行,但是进程的启动和销毁会占用很多时间,同时该进程申请的资源在进程销毁时也会释放,这就造成了对资源的频繁申请和释放也是很影响性能的,这也是MapReduce广为诟病的原因之一。

对于MapReduce处理任务模型,有如下特点:

1.每个MapTask、ReduceTask都各自运行在一个独立的JVM进程中,因此便于细粒度控制每个task占用的资源(资源可控性好)

2.每个MapTask/ReduceTask都要经历申请资源 -> 运行task -> 释放资源的过程。强调一点:每个MapTask/ReduceTask运行完毕所占用的资源必须释放,并且这些释放的资源不能够为该任务中其他task所使用

3.可以通过JVM重用在一定程度上缓解MapReduce让每个task动态申请资源且运行完后马上释放资源带来的性能开销

但是JVM重用并不是多个task可以并行运行在一个JVM进程中,而是对于同一个job,一个JVM上最多可以顺序执行的task数目,这个需要配置参数mapred.job.reuse.jvm.num.tasks,默认1。

对于多线程模型的Spark正好与MapReduce相反,这也决定了Spark比较适合运行低延迟的任务。在Spark中处于同一节点上的task以多线程的方式运行在一个executor进程中,构建了一个可重用的资源池,有如下特点:

1.每个executor单独运行在一个JVM进程中,每个task则是运行在executor中的一个线程。很显然线程线程级别的task启动速度更快

2.同一节点上所有task运行在一个executor中,有利于共享内存。比如通过Spark的广播变量,将某个文件广播到executor端,那么在这个executor中的task不用每个都拷贝一份处理,而只需处理这个executor持有的共有文件即可

3.executor所占资源不会在一些task运行结束后立即释放掉,可连续被多批任务使用,这避免了每个任务重复申请资源带来的开销

但是多线程模型有一个缺陷:同一节点的一个executor中多个task很容易出现资源征用。毕竟资源分配最细粒度是按照executor级别的,无法对运行在executor中的task做细粒度控制。这也导致在运行一些超大数据量的任务并且资源比较有限时,运行不太稳定。相比较而言,MapReduce更有利于这种大任务的平稳运行。

相关文章
|
2月前
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
75 5
|
2月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
56 3
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
83 2
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
73 0
|
2月前
|
分布式计算 资源调度 数据可视化
Hadoop-06-Hadoop集群 历史服务器配置 超详细 执行任务记录 JobHistoryServer MapReduce执行记录 日志聚合结果可视化查看
Hadoop-06-Hadoop集群 历史服务器配置 超详细 执行任务记录 JobHistoryServer MapReduce执行记录 日志聚合结果可视化查看
52 1
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
59 1
|
4月前
|
分布式计算 Apache 数据安全/隐私保护
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
61 1
|
5月前
|
分布式计算 监控 Serverless
E-MapReduce Serverless Spark 版测评
E-MapReduce Serverless Spark 版测评
11609 10
|
5月前
|
分布式计算 Serverless Spark
【开发者评测】E-MapReduce Serverless Spark获奖名单
E-MapReduce Serverless Spark获奖名单正式公布!
188 1
|
5月前
|
分布式计算 运维 Serverless
E-MapReduce Serverless Spark开发者评测
**EMR Serverless Spark测评概要** - 弹性处理大规模用户行为分析,提升产品优化与推荐精度。 - 相比自建Spark集群,EMR Serverless Spark展现更高稳定性、性能,降低成本,简化运维。 - 支持多种数据源,提供Spark SQL与DataFrame API,自动资源调度,适用于波动需求。 - 文档清晰,但可增强特定场景指导与故障排查。 - 建议优化监控、调度算法,增加内置分析工具,并强化与其他阿里云产品(如MaxCompute, DataWorks, QuickBI)的联动。 - 全托管服务减轻运维负担,但资源管理、查询效率与兼容性仍有提升空间。
86 1

热门文章

最新文章