SLS时序监控实战: Spring Boot应用监控最佳实践

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
日志服务 SLS,月写入数据量 50GB 1个月
简介: 当今随着云原生和微服务的盛行, 我们的应用的运行环境也变得越来越复杂, 也使得我们越来越难以掌握它的运行状态, 也因此诞生了一批开源软件来帮助我们提升应用的可观察性, 例如prometheus, grafana, open tracing, open telementry等, 这些多半是比较通用的技术, 在实际的场景下, 我们需要怎么从各个层面来做监控和数据的分析呢, 我们就以大家使用最多的技术栈: Java + Spring Boot为例, 来详细阐述应用监控的最佳实践

前言
当今随着云原生和微服务的盛行, 我们的应用的运行环境也变得越来越复杂, 也使得我们越来越难以掌握它的运行状态, 也因此诞生了一批开源软件来帮助我们提升应用的可观察性, 例如prometheus, grafana, open tracing, open telementry等, 这些多半是比较通用的技术, 在实际的场景下, 我们需要怎么从各个层面来做监控和数据的分析呢, 我们就以大家使用最多的技术栈: Java + Spring Boot为例, 来详细阐述应用监控的最佳实践

监控软件选型

采集, 存储, 查询: Prometheus

在云原生领域, Prometheus几乎已经是监控的标准, 它也有着丰富的生态, 支持从操作系统, 数据库, 到各类中间件的监控, 对各种语言也都提供了相应的SDK, 关于Prometheus的介绍我们不再赘述. 本文就选择Prometheus作为基础的监控软件, 围绕它展开监控最佳实践
但Prometheus也有它的问题: 如数据无法长时间存储, 大数据量下无法拓展, 只能单机运行等
而SLS的时序存储恰好解决了这些问题, 支持PromQL, 并且支持Prometheus的API, 可以直接替换开源的Prometheus的存储查询层

可视化: Grafana

Prometheus自身提供的可视化能力很弱, 因此通常会选择Grafana对接Prometheus去配置dashboard, 这两个可以说是最佳搭档

通知: alertmanager

alertmanager是Prometheus提供的一个组件, 它提供了丰富的通知路由, 发送方式

监控分层

按监控对象分:
操作系统监控(OS)
中间件/数据库监控(MySQL, Kafka, ES, Hbase, etc)
应用监控(JVM, Tomcat, Spring)
业务监控(SDK, Log)

按数据流分:

暴露指标 -> 采集 -> 存储 -> 可视化 -> 分析                                          
                        -> 报警

主机监控

主机监控, 即操作系统层面的监控有很多种姿势:

  1. Prometheus官方有node_exporter, 如果你是非阿里云的机器, 跑的是主流的Linux, 那么这是比较推荐的方式来暴露指标
  2. 我们的Logtail也提供了主机监控的插件, 可以暴露绝大多数常用指标, 如果是阿里云的机器, 那么这种方式操作起来也非常简单, 可参考文档: 采集主机监控数据_数据接入_时序存储_日志服务-阿里云
  3. 同时假如你已经使用了telegraf, 那么也可以使用telegraf来接入SLS
  4. 云上ECS已有云监控, 因此也可以直接导入云监控数据, 不重复采集: 导入云监控数据_数据接入_时序存储_日志服务-阿里云, 由于云监控只采集一些核心指标, 因此这种方式获得的指标会较少
    SLS以尽量开放的姿态, 兼容各种开源软件和协议, 帮助你以最舒服的方式接入数据

中间件/数据库监控

各类主流的开源中间件通常也都和开源的监控软件结合的比较好, 例如MySQL可以使用telegraf进行采集, Prometheus exporter对大部分开源软件的支持也都比较好: Exporters and integrations | Prometheus
同主机监控, 如果你使用的是阿里云提供的数据库或中间件, 那很可能云监控上已经有相关的指标, 因此也可以选择导入云监控数据

应用监控

Spring Boot Actuator

Spring Boot作为最主流的Java Web框架, 自然也少不了对监控的支持, 那就是Actuator, 要使用Actuator需要先添加依赖:

<dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-actuator</artifactId>
  </dependency>

Actuator默认提供了13个接口:
DE2B29AD-D36D-452C-802B-AE2B585522E7.png
这些接口默认只开放了/heath/info, 可以修改配置打开其他的接口:

management:
  endpoints:
    web:
      exposure:
        include: '*'

在Spring Boot 2.0以上, 它使用了micrometer作为底层的度量工具, micrometer是监控度量的门面, 相当于slf4j在日志框架中的作用,它能支持按照各种格式来暴露数据, 其中就有Prometheus.
我们引入一个很小的依赖来暴露Prometheus数据:

<dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-registry-prometheus</artifactId>
            <version>1.1.3</version>
</dependency>

这个依赖的作用就是会开启一个endpoint, 输出兼容Prometheus exporter的结果, 方便Prometheus来采集
同时记得修改spring boot配置:

server:
  port: 8080
spring:
  application:
    name: spring-demo
management:
  endpoints:
    web:
      exposure:
        include: 'prometheus' # 暴露/actuator/prometheus
  metrics:
    tags:
      application: ${spring.application.name} # 暴露的数据中添加application label

然后启动应用, 访问http://localhost:8080/actuator/prometheus 应该会得到如下结果:

# HELP jvm_memory_committed_bytes The amount of memory in bytes that is committed for the Java virtual machine to use
# TYPE jvm_memory_committed_bytes gauge
jvm_memory_committed_bytes{application="spring-demo",area="heap",id="PS Eden Space",} 1.77733632E8
jvm_memory_committed_bytes{application="spring-demo",area="nonheap",id="Metaspace",} 3.6880384E7
jvm_memory_committed_bytes{application="spring-demo",area="heap",id="PS Old Gen",} 1.53092096E8
jvm_memory_committed_bytes{application="spring-demo",area="heap",id="PS Survivor Space",} 1.4680064E7
jvm_memory_committed_bytes{application="spring-demo",area="nonheap",id="Compressed Class Space",} 5160960.0
jvm_memory_committed_bytes{application="spring-demo",area="nonheap",id="Code Cache",} 7798784.0
# HELP jvm_classes_unloaded_classes_total The total number of classes unloaded since the Java virtual machine has started execution
# TYPE jvm_classes_unloaded_classes_total counter
jvm_classes_unloaded_classes_total{application="spring-demo",} 0.0
# HELP jvm_memory_max_bytes The maximum amount of memory in bytes that can be used for memory management
jvm_memory_max_bytes{application="spring-demo",area="nonheap",id="Code Cache",} 2.5165824E8
# HELP jvm_classes_loaded_classes The number of classes that are currently loaded in the Java virtual machine
# TYPE jvm_classes_loaded_classes gauge
jvm_classes_loaded_classes{application="spring-demo",} 7010.0
# HELP jvm_threads_daemon_threads The current number of live daemon threads
# TYPE jvm_threads_daemon_threads gauge
jvm_threads_daemon_threads{application="spring-demo",} 24.0
# HELP jvm_threads_states_threads The current number of threads having NEW state

# 太长, 后面省略

这就是Prometheus exporter的格式

JVM监控

我们看到里面暴露了很详细的jvm的指标, 这样我们就可以来配置jvm监控了
首先Prometheus需要增加对http://localhost:8080/actuator/prometheus的采集, 我们修改一下配置:

global:
  scrape_interval: 15s
scrape_configs:
  - job_name: "spring-demo"
    metrics_path: "/actuator/prometheus"
    static_configs:
    - targets: ["localhost:8080"]

启动Prometheus, 没报错的话应该就已经在正常采集了, 我们访问prometheus的web ui看一下数据:http://localhost:9090/graph
CD29EFE5-6B74-40F6-A872-C2B2F33A0B98.png
看到这样的结果说明数据采集正常, 写入Prometheus后通过他的remote write协议可以把数据持久化到SLS中, 可参见文档: 采集Prometheus监控数据
然后可以把SLS时序库作为Grafana的数据源来配置, 同样有相关文档: 时序数据对接Grafan
那么一切准备就绪了, 我们就可以开始配置dashboard了, 我们在grafana.com上传了一个模板dashboard, 直接在grafana中导入即可:
选择+ -> Import -> 粘贴url:
https://grafana.com/grafana/dashboards/12856
然后选择上面创建的Prometheus数据源, 即可导入, 完整的效果如下:
micrometer_grafana1.png

大家在使用SLS中遇到的任何问题,请加钉钉群,我们有专门的日志女仆24小时在线答疑,还有火锅哥和烧烤哥专业支持!~ SLS微信公众号定期会发布各类日志、监控领域的技术分享文章并定期举行抽奖,欢迎小伙伴们关注~
另外欢迎对大数据、分布式、机器学习等有兴趣的同学加入,转岗、内推,来者不拒,请用简历狠狠的砸我,联系邮箱luoxing.klx@alibaba-inc.com !~
image.png

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
2月前
|
数据可视化 Java BI
将 Spring 微服务与 BI 工具集成:最佳实践
本文探讨了 Spring 微服务与商业智能(BI)工具集成的潜力与实践。随着微服务架构和数据分析需求的增长,Spring Boot 和 Spring Cloud 提供了构建可扩展、弹性服务的框架,而 BI 工具则增强了数据可视化与实时分析能力。文章介绍了 Spring 微服务的核心概念、BI 工具在企业中的作用,并深入分析了两者集成带来的优势,如实时数据处理、个性化报告、数据聚合与安全保障。同时,文中还总结了集成过程中的最佳实践,包括事件驱动架构、集中配置管理、数据安全控制、模块化设计与持续优化策略,旨在帮助企业构建高效、智能的数据驱动系统。
188 1
将 Spring 微服务与 BI 工具集成:最佳实践
|
2月前
|
Prometheus 监控 Cloud Native
基于docker搭建监控系统&日志收集
Prometheus 是一款由 SoundCloud 开发的开源监控报警系统及时序数据库(TSDB),支持多维数据模型和灵活查询语言,适用于大规模集群监控。它通过 HTTP 拉取数据,支持服务发现、多种图表展示(如 Grafana),并可结合 Loki 实现日志聚合。本文介绍其架构、部署及与 Docker 集成的监控方案。
348 122
基于docker搭建监控系统&日志收集
|
3月前
|
XML JSON Java
Spring框架中常见注解的使用规则与最佳实践
本文介绍了Spring框架中常见注解的使用规则与最佳实践,重点对比了URL参数与表单参数的区别,并详细说明了@RequestParam、@PathVariable、@RequestBody等注解的应用场景。同时通过表格和案例分析,帮助开发者正确选择参数绑定方式,避免常见误区,提升代码的可读性与安全性。
|
2月前
|
Prometheus 监控 Java
日志收集和Spring 微服务监控的最佳实践
在微服务架构中,日志记录与监控对系统稳定性、问题排查和性能优化至关重要。本文介绍了在 Spring 微服务中实现高效日志记录与监控的最佳实践,涵盖日志级别选择、结构化日志、集中记录、服务ID跟踪、上下文信息添加、日志轮转,以及使用 Spring Boot Actuator、Micrometer、Prometheus、Grafana、ELK 堆栈等工具进行监控与可视化。通过这些方法,可提升系统的可观测性与运维效率。
293 1
日志收集和Spring 微服务监控的最佳实践
|
2月前
|
存储 缓存 监控
用 C++ 红黑树给公司电脑监控软件的日志快速排序的方法
本文介绍基于C++红黑树算法实现公司监控电脑软件的日志高效管理,利用其自平衡特性提升日志排序、检索与动态更新效率,并结合实际场景提出优化方向,增强系统性能与稳定性。
117 4
|
5月前
|
Cloud Native Java 微服务
Spring Boot 3.x 现代化应用开发实战技巧与最佳实践
本指南基于Spring Boot 3.x,融合微服务、云原生与响应式编程等前沿技术,打造现代化应用开发实践。通过构建智能电商平台案例,涵盖商品、订单、用户等核心服务,展示Spring WebFlux、OAuth 2.0认证、Spring Cloud Gateway路由、GraalVM原生编译等技术实现。同时提供Docker/Kubernetes部署方案及性能优化策略,助您掌握从开发到生产的全流程。代码示例详实,适合进阶开发者参考。
579 2
|
5月前
|
Prometheus 监控 Cloud Native
|
5月前
|
Prometheus 监控 Cloud Native
Spring Boot 可视化监控
本文介绍了如何通过Spring Actuator、Micrometer、Prometheus和Grafana为Spring Boot应用程序添加监控功能。首先创建了一个Spring Boot应用,并配置了Spring Actuator以暴露健康状态和指标接口。接着,利用Micrometer收集应用性能数据,并通过Prometheus抓取这些数据进行存储。最后,使用Grafana将Prometheus中的数据可视化,展示在精美的仪表板上。整个过程简单易行,为Spring Boot应用提供了基本的监控能力,同时也为后续扩展更详细的监控指标奠定了基础。
971 2
|
JSON 前端开发 Java
SpringBoot 实战:一招实现结果的优雅响应
今天说一下 Spring Boot 如何实现优雅的数据响应:统一的结果响应格式、简单的数据封装。
552 0
SpringBoot 实战:一招实现结果的优雅响应
|
1月前
|
JavaScript Java 关系型数据库
基于springboot的项目管理系统
本文探讨项目管理系统在现代企业中的应用与实现,分析其研究背景、意义及现状,阐述基于SSM、Java、MySQL和Vue等技术构建系统的关键方法,展现其在提升管理效率、协同水平与风险管控方面的价值。
下一篇
oss云网关配置