AI技术已达如此高度:去码、上色6到飞起

简介: AI技术已达如此高度:去码、上色6到飞起在图片处理领域这块,AI刷的存在感越来越多。早前笔者就介绍过AI无损放大图片、AI去除马赛克、AI自动给线稿上色之类的玩法,现在,又有人给笔者推荐了一个AI黑科技——黑白照片一键变彩色。

--------点击屏幕右侧或者屏幕底部“+订阅”,关注我,随时分享机器智能最新行业动态及技术干货----------

在图片处理领域这块,AI 刷的存在感越来越多。早前笔者就介绍过 AI 无损放大图片、AI 去除马赛克、AI 自动给线稿上色之类的玩法,现在,又有人给笔者推荐了一个 AI 黑科技——黑白照片一键变彩色。

image.png

AI 在图片处理领域频频刷存在感,就算是马赛克,AI 技术也能修复成高清,现在 AI 还能上色了!

是的,AI 可以让黑白照自动变成彩色照片了!我们知道黑白照片上色的难点,在于它其中并没有包含任何色彩信息,需要靠人来辨认物体的什么,然后靠想象、脑补才能猜出黑白照应有的颜色,靠人工填上去。而现在,AI 也可以做到这一点?据介绍,这个“Colourise.sg”网站,利用了机器学习和神经网络算法,利用数十万张的照片建立了着色模型,我们一起来看看它到底靠不靠谱。

Colourise.sg是一个来自于新加坡的网站,在国内连接速度并不算快,有时候会出现连接问题。

image.png

Colourise.sg页面

Colourise.sg 的使用很简单,开启网页后,滚动到页面下方的交互框,就可以上传图片了。使用前,可以需要先做一个人机验证,判断你是不是真人,有时候这个验证码会刷不出来,多刷几次就可以了。

image.png

在这个框框上传需要上色的图片

Colourise.sg 一次只能为一张黑白照片上色,上传黑白照片后,Colourise.sg 很快就会给出结果。Colourise.sg 给出的结果还是很好玩的,提供了原图和上色后图片的对比图,而且用户可以拖动原图和上色图片的分界线,作更详细的比较。

Colourise.sg 的 AI 上色效果如何?我们来看看几组照片。

首先是一张二战历史照片。这张照片原本就是黑白照,可以看到 Colourise.sg 的上色效果还是比较自然的,但一些细节也有翻车的情况,总体来说比较好评。

我们再用现代的彩色照片来测试 Colourise.sg 的功力。这里先利用 PhotoShop 的去色程序,将一张彩色照片去色,然后再将它上传到 Colourise.sg 用 AI 上色,对比原先的彩色照片,看看 Colourise.sg 的上色到底是不是真的那么神奇。

首先来看两张风景照。

1.png

2.png

可以看到,Colourise.sg 总体来说还是比较自然的。它能够比较好地判断天空、海水、沙滩、绿植等要素,并给出了较为正确的色彩。特别是海边的这张照片,上色效果已经接近以假乱真,和原片只有风格上的差异而已。不过 Colourise.sg 对于一些细节的把控仍是有问题的,例如无法分辨枯叶和绿叶,只能笼统地将植物都填上绿色,对比原图色彩单调了不少。

再来看一张室内照。

3.png

这张照片Colourise.sg 的处理效果是不太理想的。和原图相比,Colourise.sg 上色的版本丢失了很多色彩,而且反差不强烈。对于室内布置的人造物,Colourise.sg 似乎没有太多的上色方案,毕竟和自然物体相比,人造物体的颜色有更多的可能性,Colourise.sg 的上色趋于保守也是可以理解的。但 Colourise.sg 竟然也没正确还原盆栽绿植的颜色,这就有点令人失望了。

最后我们来看一张食物的照片。

4.png

这简直就是翻车现场。Colourise.sg 基本没有起到上色的作用,换言之 Colourise.sg 根本就不知道这些食物、餐具应该的什么颜色。食物、餐具也是人造物,看来 Colourise.sg 对没有固定颜色搭配的物品,上色的确不擅长。

总结

可见,Colourise.sg 的能力还是比较局限的。对于自然景观、人脸皮肤等颜色比较固定的对象,Colourise.sg 能够正确上色;而对于家具、食物、餐具等颜色千万种的事物,Colourise.sg 就难以应付了。当然,随着数据库的进一步充实,AI 是可以继续进步的,期待今后有更好的 AI 上色方案吧。

image.png

原文链接:https://ai.51cto.com/art/202008/622706.htm

目录
相关文章
|
13天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
62 3
|
23天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
129 59
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用####
本文探讨了人工智能(AI)技术在医疗领域的创新应用及其带来的革命性变化。通过分析AI在疾病诊断、个性化治疗、药物研发和患者管理等方面的具体案例,展示了AI如何提升医疗服务的效率和准确性。此外,文章还讨论了AI技术面临的挑战与伦理问题,并展望了未来的发展趋势。 ####
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
29 5
|
12天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
77 11
|
17天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
73 4
|
17天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
21天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
19天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
下一篇
无影云桌面