案例解析 | 广东自由流收费稽核方案,AI稽核新模式

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 全国首个高速不停车收费AI稽核项目正式落地广东,在业内率先使用AI和大数据技术准确处理高速公路不停车收费的稽核工作。

随着取消省界收费站工程落成,我国逐步迈进全国高速公路“一张网”运行感知新时代。借助交通强国和“撤站”政策,2019年12月,广东联合电服和阿里云共同宣布,全国首个高速不停车收费AI稽核项目正式落地广东,在业内率先使用AI和大数据技术准确处理高速公路不停车收费的稽核工作。
image.png

案例背景:联合电服的挑战与机遇

广东联合电服负责广东省公路联网收费和电子不停车收费的实施工作,是省内唯一发行汽车ETC粤通卡的企业,同时还负责省内高速公路联网收费清分结算的工作,是全国高速公路联网收费体系中的广东省联网中心营运实体。在全国取消省界收费站的工作中,联合电服作为广东撤站工作组的核心落地团队,承担了大量的具体任务,推进了高速公路收费站的ETC发行工作。

业务痛点:收费稽查和追缴难度变大

随着省界收费站的取消,以及ETC上车潮的爆发,高速公路的路网服务从省域路网扩大到全国一张网,导致收费稽查和追缴难度变大。

精准问题:收费的准确性依赖于路侧的收费设施设备,对车辆识别要求更高,仅识别车牌已不满足新场景下的稽核要求。如何准确地对车辆身份进行识别,规避收费逃费,有效地进行稽核,是业内要面对的问题。
效率问题:按照新的收费技术要求,车辆图片、视频带来以往数十倍的存储和计算压力,稽核的效率急需提升。
系统压力:广东省每天600多万交易流水,翻倍到过亿,15倍以上的增长;半年新增1000万用户,需要IT资源快速支持发卡业务,发卡、收费系统压力倍增。
稽核需求:公路院报告显示,目前逃费约为3万/km/年,广东省每年逃费2.5亿,占收入总比的 0.5%,行业协会打逃,目前实现追缴不到1亿,每年损失超过5个亿,收费稽核业务需求倍增。
image.png

解决方案:解决高速撤站收费痛点

视频识别技术:广东联合电服与阿里云合作,借助阿里云全球领先的视频识别技术,精确感知车辆特征,建设智能化稽核分析系统,发现车辆以套牌、遮牌等形式偷逃费的行为。
数据技术:在图片、视频全部上云的基础上,还原车辆在全路网的行驶轨迹,突破以往单个设备只能提供有限依据的限制,堵住车辆换卡逃费、绕路逃费的漏洞。
边缘计算:在边缘节点上提供稳定的计算能力,通过实时数据处理,缓解图片、视频传输上云的流量压力。
案例创新:全国首个高速不停车收费AI稽核项目
省域范围AI稽核:国内首家在省域范围内落地,利用人工智能和大数据技术对高速公路偷漏逃费行为进行稽核分析,并投入实际运行的AI大稽查系统。
云边一体、全局协同。全广东省的100多个路段布设了边缘计算能力,同时在省联网中心布设了中心技术节点,实时获取信息,进行相应的处理。
多源推理,轨迹还原。融合路段RSU数据、视频图像数据、互联网地图数据,还原车辆行驶轨迹。
以图搜图。融合车辆特征识别、车辆通行行为识别等多种技术,实现车辆身份的准确推理。
特征档案。建立基于路网车辆特征的档案库,一车一档案,一行一轨迹,自动、准确识别各类通行异常行为。
一键稽查,准确高效。通过多源推理还原车辆行驶,形成证据链,高效协助通行费稽查补缴。
image.png

方案价值:为高速公路收费稽核业务智能化升级带来新动能

(1)新技术实现稽查业务智能化升级
资源使用:所有资源按需使用,上云后贴合业务流量曲线准备计算资源,成本大幅优化。
大数据融合稽查:全路网覆盖的摄像头轨迹还原与分析提供实时与离线的轨迹还原、重点货车的偷逃费行为研判,为稽核中心提供科技手段提高打击成效并减少工作压力。
(2)“云边一体”部署模式得到最佳资源性价比
分布式和低延时计算:边缘计算聚焦实时、短周期数据的分析,能够更好地支撑本地业务的实时智能化处理与执行。
效率更高:由于边缘计算距离龙门架、路段业主分析系统更近,在边缘节点处实现了对数据的过滤和分析,因此效率更高。
缓解流量压力:在进行云端传输时通过边缘节点进行一部分简单数据处理,进而缩短设备响应时间,减少从设备到云端的数据流量。
(3)以数据资源为核心推动联合电服融合创新发展
项目总体将在数据融合和资源整合的基础上,推动数据开放共享,提升联合电服的数据分析能力,为将来数据中台的建设奠定最为坚实的数据能力,并为有效处理复杂的业务问题提供新的手段。
image.png

除广东高速外,阿里云还与诸多地区高速达成合作,致力于“更聪明”的道路。在以智慧高速与自由流收费和省界收费站里面的场景中,阿里云还落地了包括云计算技术、自主可控的飞天云平台,稽核平台、收费的方案等,更好实现路段级数字化运营。

广东联合电服总经理李斌表示:“云计算、人工智能等新技术为高速公路收费稽核业务智能化升级、高速智慧运营带来了新的可能,这次与阿里云的合作也将为联合电服在数字化转型上提供更多想象空间。”

阿里云智慧交通专题上线啦!方案全景、体验中心、客户案例、上云模式、架构师咨询……更多详情,进入专题!

相关文章
|
30天前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
9天前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
14天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
76 11
|
18天前
|
存储 人工智能 自然语言处理
高效档案管理案例介绍:文档内容批量结构化解决方案解析
档案文件内容丰富多样,传统人工管理耗时低效。思通数科AI平台通过自动布局分析、段落与标题检测、表格结构识别、嵌套内容还原及元数据生成等功能,实现档案的高精度分块处理和结构化存储,大幅提升管理和检索效率。某历史档案馆通过该平台完成了500万页档案的数字化,信息检索效率提升60%。
|
19天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
28天前
|
Prometheus 监控 Cloud Native
实战经验:成功的DevOps实施案例解析
实战经验:成功的DevOps实施案例解析
41 6
|
28天前
|
数据采集 机器学习/深度学习 数据挖掘
10种数据预处理中的数据泄露模式解析:识别与避免策略
在机器学习中,数据泄露是一个常见问题,指的是测试数据在数据准备阶段无意中混入训练数据,导致模型在测试集上的表现失真。本文详细探讨了数据预处理步骤中的数据泄露问题,包括缺失值填充、分类编码、数据缩放、离散化和重采样,并提供了具体的代码示例,展示了如何避免数据泄露,确保模型的测试结果可靠。
37 2
|
30天前
|
人工智能 数据挖掘 大数据
排队免单与消费增值模式:融合玩法与优势解析
排队免单模式通过订单排队、奖励分配、加速与退出机制等,结合消费增值模式中的积分制度、利润入池与积分增值等,共同提升消费者参与度和忠诚度,促进商家销售增长。具体包括订单自动排队、大单拆小单、异业联盟、线上线下融合及数据分析优化等进阶玩法,以及积分增值模型演算,形成一套完整的消费者激励体系。

推荐镜像

更多
下一篇
无影云桌面