再出王牌:阿里云 Jindo DistCp 全面开放使用,成为阿里云数据迁移利器

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 此前 Jindo DistCp 仅限于E-MapReduce产品内部使用,此次全方位面向整个阿里云OSS/HDFS用户放开,并提供官方维护和支持技术,欢迎广大用户集成和使用。

作者:王涛,花名扬礼,阿里巴巴计算平台事业部 EMR 开发工程师. 目前从事开源大数据存储计算方面的开发和优化工作。


随着阿里云JindoFS SDK的全面放开使用,基于JindoFS SDK的阿里云数据迁移利器Jindo DistCp现在也全面面向用户开放使用。Jindo DistCp是阿里云E-MapReduce团队开发的大规模集群内部和集群之间分布式文件拷贝的工具。其使用MapReduce实现文件分发,错误处理和恢复,把文件和目录的列表作为map/reduce任务的输入,每个任务会完成源列表中部分文件的拷贝。目前全量支持hdfs->oss,hdfs->hdfs,oss->hdfs,oss->oss的数据拷贝场景,提供多种个性化拷贝参数和多种拷贝策略。重点优化hdfs到oss的数据拷贝,通过定制化CopyCommitter,实现No-Rename拷贝,并保证数据拷贝落地的一致性。功能全量对齐S3 DistCp和HDFS DistCp,性能较HDFS DistCp有较大提升,目标提供高效、稳定、安全的数据拷贝工具。本文主要介绍如何使用Jindo DistCp来进行基本文件拷贝,以及如何在不同场景下提高数据拷贝性能。值得一提的是,此前 Jindo DistCp 仅限于E-MapReduce产品内部使用,此次全方位面向整个阿里云OSS/HDFS用户放开,并提供官方维护和支持技术,欢迎广大用户集成和使用。

大数据和数据迁移工具

在传统大数据领域,我们经常使用HDFS作为底层存储,并且在HDFS存储大规模的数据。在进行数据迁移、数据拷贝的场景中,大家选择最常用的是Hadoop自带的DistCp工具,但是其不能很好利用对象存储系统如OSS的特性,导致效率低下并且不能最终保证一致性,提供的功能选项也比较简单,不能很好的满足用户的需求。此时一个高效、功能丰富的数据迁移工具成为影响软件搬栈、业务上云的重要影响因素。

Hadoop DistCp

Hadoop DistCp是Hadoop集成的分布式数据迁移工具,提供了基本文件拷贝、覆盖拷贝、指定map并行度、log输出路径等功能。在Hadoop2x上对DistCp进行了部分优化例如拷贝策略的选择,默认使用 uniformsize(每个 map 会平衡文件大小)如果指定 dynamic,则会使用 DynamicInputFormat。这些功能优化了普通hdfs间数据拷贝,但是对于对象存储系统如OSS缺少数据写入方面的优化。

S3 DistCp

S3 DistCp是AWS为S3提供的distcp工具, S3DistCp是Hadoop DistCp 的扩展,它进行了优化使得其可以和S3结合使用,并新增了一些实用功能。新增功能如增量复制文件、复制文件时指定压缩方式、根据模式进行数据聚合、按照文件清单进行拷贝等。S3 DistCp依靠S3对象存储系统,目前只能在AWS EMR内部使用,并不开放给普通用户。

Jindo DistCp

Jindo DistCp是一个简单易用的分布式文件拷贝工具,目前主要用在E-Mapreduce集群内,主要提供hdfs到OSS的数据迁移服务,相比于Hadoop DistCp和S3 DistCp,Jindo DistCp做了很多优化以及新增了许多个性化功能,并且深度结合OSS对象存储的特性,定制化CopyCommitter,实现No-Rename拷贝,大大缩短上云数据迁移时间消耗。现在Jindo DistCp对外开放使用,我们可以使用该功能来进行上云数据迁移,获得OSS数据迁移利器。

为什么使用 Jindo DistCp?

1、效率高,在测试场景中最高可到1.59倍的加速。
2、基本功能丰富,提供多种拷贝方式和场景优化策略。
3、深度结合OSS,对文件提供直接归档和低频、压缩等操作。
4、实现No-Rename拷贝,保证数据一致性。
5、场景全面,可完全替代Hadoop DistCp,支持多Hadoop版本(如有问题可提issue)

Jindo DistCp 兼容性如何?

Jindo DistCp目前支持Hadoop2.7+和最新的Hadoop3.x,以两个不同的jar形式提供服务,依赖Hadoop环境并且不会和Hadoop DistCp产生冲突。在阿里云EMR内部可直接提供Jindo DistCp的服务,用户无需进行jar包下载。用户下载jar包后,再通过参数或者Hadoop配置文件配上oss的AK即可使用。

使用 Jindo DistCp 性能提升多少?

我们做了一个Jindo DistCp和Hadoop DistCp的性能对比,在这个测试中我们以hdfs到oss为主要场景,利用Hadoop自带的测试数据集TestDFSIO分别生成1000个10M、1000个500M、1000个1G大小的文件进行从hdfs拷贝数据到oss上的测试过程。

截屏2020-07-14 下午6.41.02.png
45.png

分析测试结果,可以看出Jindo DistCp相比Hadoop DistCp具有较大的性能提升,在测试场景中最高可达到1.59倍加速效果。

使用工具包

1. 下载jar包

我们去github repo下载最新的jar包 jindo-distcp-x.x.x.jar
注意:目前Jar包只支持Linux、MacOS操作系统,因为SDK底层采用了native代码。

2. 配置OSS访问AK

您可以在命令中使用程序执行时指定--key、--secret、--endPoint参数选项来指定AK。

示例命令如下:

hadoop jar jindo-distcp-2.7.3.jar --src /data/incoming/hourly_table --dest oss://yang-hhht/hourly_table --key yourkey --secret yoursecret --endPoint oss-cn-hangzhou.aliyuncs.com

您也可以将oss的ak、secret、endpoint预先配置在 hadoop的 core-site.xml 文件里 ,避免每次使用时临时填写ak。

<configuration>
    <property>
        <name>fs.jfs.cache.oss-accessKeyId</name>
        <value>xxx</value>
    </property>
    <property>
        <name>fs.jfs.cache.oss-accessKeySecret</name>
        <value>xxx</value>
    </property>
    <property>
        <name>fs.jfs.cache.oss-endpoint</name>
        <value>oss-cn-xxx.aliyuncs.com</value>
    </property>
</configuration>

另外,我们推荐配置免密功能,避免明文保存accessKey,提高安全性。

使用手册

Jindo DistCp提供多种实用功能及其对应的参数选择,下面介绍参数含义及其示例

截屏2020-07-14 下午6.53.08.png
截屏2020-07-14 下午6.53.32.png

截屏2020-07-14 下午6.53.50.png

更多详细使用细节,请参考Jindo DistCp使用指南

联系我们

Jindo DistCp还在日益完善,后续会不断根据用户需求进行优化。欢迎大家下载使用Jindo DistCp,如果遇到任何问题,请随时联系阿里云E-Mapreduce团队,或者在github上提交issue,我们将尽快为您解答。


相关阅读

重磅:阿里云 JindoFS SDK 全面开放使用,OSS 文件各项操作性能得到大幅提升

JindoFS - 分层存储

EMR Spark-SQL性能极致优化揭秘 Native Codegen Framework

Jindo SQL 性能优化之 RuntimeFilter Plus

JindoFS: 云上大数据的高性能数据湖存储方案

JindoFS概述:云原生的大数据计算存储分离方案

JindoFS解析 - 云上大数据高性能数据湖存储方案


后续我们也会在云栖社区和钉钉群分享更多的 Jindo 技术干货,欢迎有兴趣的同学加入 【阿里云EMR钉钉群】进行交流和技术分享。
产品群.JPG

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
4月前
|
开发框架 开发者 UED
震惊!Uno Platform 竟能这样实现实时数据同步,开发者必看的最佳实践秘籍大公开!
【9月更文挑战第7天】Uno Platform 是一款强大的跨平台开发框架,支持使用单一代码库构建多平台应用。本文介绍其实时数据同步的最佳实践,包括使用 WebSocket 实现双向高效数据传输。通过示例代码展示了如何在客户端建立 WebSocket 连接、处理实时数据接收及利用数据绑定和 ReactiveUI 等技术自动更新 UI,确保一致性和响应性,从而提升用户体验。
83 2
|
6月前
|
分布式计算 关系型数据库 数据处理
美柚与MaxCompute的数据同步架构设计与实践
数据处理与分析 一旦数据同步到MaxCompute后,就可以使用MaxCompute SQL或者MapReduce进行复杂的数据处理和分析。
|
SQL 安全 Cloud Native
NineData数据复制技术助力实时数仓构建,开发人员必读!
NineData 和 SelectDB 共同举办的主题为“实时数据驱动,引领企业智能化数据管理”的线上联合发布会,圆满成功举办!双方聚焦于实时数据仓库技术和数据开发能力,展示如何通过强大的生态开发兼容性,对接丰富的大数据生态产品,助力企业快速开展数据分析业务,共同探索实时数据驱动的未来企业智能化数据管理解决方案。本文根据玖章算术技术副总裁陈长城(天羽)在 NineData X SelectDB 联合发布会的主题演讲内容整理。
502 0
NineData数据复制技术助力实时数仓构建,开发人员必读!
|
分布式计算 MaxCompute
《帮助企业做好MaxCompute成本优化的实践》电子版地址
帮助企业做好MaxCompute成本优化的实践
89 0
《帮助企业做好MaxCompute成本优化的实践》电子版地址
|
DataWorks 大数据
《DataWorks数据集成实时同步最佳实践(含内测邀请)-2020飞天大数据平台实战应用第一季》电子版地址
DataWorks数据集成实时同步最佳实践(含内测邀请)-2020飞天大数据平台实战应用第一季
165 0
《DataWorks数据集成实时同步最佳实践(含内测邀请)-2020飞天大数据平台实战应用第一季》电子版地址
|
存储 分布式计算 大数据
大数据教程(一)—— Hadoop集群坏境搭建配置
前言 关于时下最热的技术潮流,无疑大数据是首当其中最热的一个技术点,关于大数据的概念和方法论铺天盖地的到处宣扬,但其实很多公司或者技术人员也不能详细的讲解其真正的含义或者就没找到能被落地实施的可行性方案,更有很多数据相关的项目比如弄几张报表,写几个T-SQL语句就被冠以“大数据项目”,当然了,时下热门的话题嘛,先把“大数据”帽子扣上,这样才能显示出项目的高大上,得到公司的重视或者高层领导的关注。
3379 0
|
分布式计算 Cloud Native 大数据
2021阿里巴巴大数据技术公开课第一季 — 外部工具连接SaaS模式云数仓MaxCompute实战
MaxCompute 是面向分析的企业级 SaaS 模式云数据仓库,以 Serverless 架构提供快速、全托管的在线数据仓库服务,消除了传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,帮助企业和大数据开发者经济并高效的分析处理海量数据。
785 0
2021阿里巴巴大数据技术公开课第一季 — 外部工具连接SaaS模式云数仓MaxCompute实战
|
OLAP 数据库 流计算
开放下载《实时数仓Hologres技术实战一本通2.0》
《实时数仓Hologres技术实战一本通2.0》从零开始,手把手教学学习实时数仓,融合实时数仓&报表、数据仓库、传统OLAP迁移等多个热门场景,助力实现服务和分析一体化实时数仓。
75165 1
开放下载《实时数仓Hologres技术实战一本通2.0》
|
SQL 分布式计算 运维
冬季实战营第五期学习报告1:基于EMR离线数据分析
本实验免费提供EMR集群,基于EMR集群进行离线数据分析。
|
存储 SQL 分布式计算
数据湖实操讲解【OSS 访问加速】第十一讲:打开 OSS 多版本-合规和分析两不误
数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs
数据湖实操讲解【OSS 访问加速】第十一讲:打开 OSS 多版本-合规和分析两不误