Lyft 发布最大 L5 自动驾驶预测数据集

简介:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


Lyft 近日发布了一个 Level 5 级别的自动驾驶预测数据集,包含了超过 1000 个小时的驾驶记录。此外,公司还发起自动驾驶运动预测挑战赛,奖金池 3 万美金。

Lyft 又发布了新的数据集。

去年 7 月,Lyft 发布了 L5 级别自动驾驶感知数据集,包含超过 5 万 5 千个由人类标记的 3D 注释帧。当时官方称作是目前同类产品中最大的公开数据集。

这才刚过去一年,Lyft 又发布了一套 L5 级别的自动驾驶预测数据集。

1

万个场景,2500 多公里道路数据

Lyft 此次发布的数据集侧重于运动预测。官方表示,自动驾驶领域长期研究的一个问题是,创建足够健壮和可靠的模型,来预测交通运动。

这些数据是由 23 辆自动驾驶车辆组成的车队,在加州帕洛阿尔托的一条固定路线上收集的,历时 4 个月,包含遇到的汽车,行人和其他障碍物的行驶日志。

该数据集具体包括:

  • 1000 个小时:超过 1000 个小时的自动驾驶汽车移动记录;
  • 17 万个场景:每个场景持续约 25 秒,包括交通信号灯、航拍地图、人行道等;
  • 16000 英里:来自公共道路的 16000 英里(约合 2575 公里)数据;
  • 15242 个注释图:包括已标记元素的高清语义图以及该区域的高清鸟瞰图。

2

数据集中鸟瞰语义图示例

这些运动数据由安装在 Lyft 车顶的传感器组收集,当车辆行驶数万英里时,传感器组会捕捉激光雷达、摄像机以及雷达数据。

5

6

数据集中,每个场景在给定的时间点编码了车辆周围的状态,红色为自动驾驶汽车,黄色为其他车辆

Lyft 表示,该集合与提供的工具包一起,构成了迄今为止最大、最完整、最详细的数据集,用于开发自动驾驶,机器学习任务,如运动预测、规划和仿真。

目前,该数据集只开放部分子集下载,包括:

  • 样本数据集(53 MB)
  • 训练数据集(分三部分,共 69.4 GB)
  • 鸟瞰图(2 GB)
  • 语义图(2 MB)

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-06-30
本文作者:神经星星
本文来自:“掘金”,了解相关信息可以关注“掘金”

相关文章
|
传感器 机器学习/深度学习 自动驾驶
无人驾驶中常用的37个数据集以及每个数据集的亮点
我们在写论文的时候,经常会用到数据集.以下是我的一些整理.
|
15天前
|
人工智能 自动驾驶 决策智能
DrivingDojo:中科院联合美团推出的自动驾驶数据集,包含视频片段、驾驶操作和驾驶知识
DrivingDojo是由中国科学院自动化研究所与美团无人车团队联合推出的交互式驾驶世界模型数据集,包含18,000个视频片段,涵盖驾驶操作、多智能体交互及开放世界驾驶知识。该数据集为自动驾驶模型的开发提供了坚实基础,并定义了动作指令跟随(AIF)基准,用于评估世界模型在执行动作控制的未来预测能力。
46 6
DrivingDojo:中科院联合美团推出的自动驾驶数据集,包含视频片段、驾驶操作和驾驶知识
|
4月前
|
机器学习/深度学习 数据采集 存储
【2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】2 DPCNN、HAN、RCNN等传统深度学习方案
参加2021第五届“达观杯”基于大规模预训练模型的风险事件标签识别比赛的经验,包括使用DPCNN、HAN、TextRCNN、CapsuleNet和TextRCNNAttention等传统深度学习模型的方案实现,以及提分技巧,如多个模型的提交文件投票融合和生成伪标签的方法。
43 0
|
7月前
|
机器学习/深度学习 传感器 自动驾驶
构建一个基于深度学习的自动驾驶模拟系统
【5月更文挑战第31天】本文探讨了构建基于深度学习的自动驾驶模拟系统,该系统包括模拟环境、传感器模拟、深度学习模型、车辆控制和评估反馈等组件。关键技术研发涉及3D渲染、深度学习框架、传感器模拟、车辆动力学模型和评估反馈机制。模拟系统为自动驾驶测试提供安全平台,促进性能优化,随着技术发展,未来模拟系统将更智能,助力自动驾驶技术革新出行体验。
|
传感器 存储 自动驾驶
ARGO数据集—自动驾驶场景(版本:Argoverse 1.1)
ARGO是一个自动驾驶场景的数据集,它有竞赛排行(立体深度估计、运动预测、3D检测、3D跟踪等等).Argoverse1.1 通过1000 多个驾驶小时中提取,包括 113 个场景的 3D 跟踪注释,和用于运动预测的 324,557 条车辆轨迹。
375 0
|
数据库
开源数据集——行人数据
开源数据集——行人数据
3478 0
开源数据集——行人数据
|
传感器 机器学习/深度学习 人工智能
CVPR 2023|All in UniSim:统一的自动驾驶仿真平台
CVPR 2023|All in UniSim:统一的自动驾驶仿真平台
270 0
|
人工智能 自动驾驶 算法
Wilddash2 | 最新自动驾驶全景分割数据集!CVPR2022
本文提出了三点改进自动驾驶场景下全景分割的方法。首先,本文提出的标签策略统一了四个目前主流的自动驾驶全景分割数据集,并添加了新的车辆标签(皮卡车和货车)来清理混乱的标签。为了将新标签添加至现有设置中,本文提供了Mapillary Vistas、IDD、Cityscapes数据集的完整新标签信息。
Wilddash2 | 最新自动驾驶全景分割数据集!CVPR2022
|
机器学习/深度学习 JSON 编解码
伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测
伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测
264 0
|
机器学习/深度学习 人工智能 自动驾驶
上海人工智能实验室自动驾驶团队原作解读OpenLane:大规模真实场景3D车道线数据集
上海人工智能实验室自动驾驶团队原作解读OpenLane:大规模真实场景3D车道线数据集
265 0

热门文章

最新文章