阿里云机器翻译Python使用Demo

本文涉及的产品
文档翻译,文档翻译 1千页
语种识别,语种识别 100万字符
文本翻译,文本翻译 100万字符
简介: 阿里巴巴机器翻译是由阿里巴巴匠心打造的在线智能机器翻译服务。依托领先的自然语言处理技术和海量的互联网数据优势,阿里巴巴成功上线基于注意力机制的深层神经网络翻译系统(NMT),帮助用户跨越语言鸿沟,畅享交流和获取信息,实现无障碍沟通。凭借海量数据积累及关键技术创新,在电商领域翻译质量独具优势。下面介绍如何使用alimt SDK和core SDK调用阿里云机器翻译API。

alimt SDK 安装

aliyun-python-sdk-alimt

图片.png

Code Sample

#!/usr/bin/env python
#coding=utf-8

from aliyunsdkcore.client import AcsClient
from aliyunsdkalimt.request.v20181012.TranslateGeneralRequest import TranslateGeneralRequest

client = AcsClient('LTAIOZZg********', 'v7CjUJCMk7j9aKduMA************', 'cn-hangzhou')

request = TranslateGeneralRequest()
request.set_accept_format('json')

request.set_FormatType("text")
request.set_SourceLanguage("zh")
request.set_TargetLanguage("en")
request.set_SourceText("北京欢迎你")

response = client.do_action_with_exception(request)
# python2:  print(response)
print(str(response, encoding='utf-8'))

The Result

{"RequestId":"9DD4EC42-8977-4D2B-AA05-5D2BB27CC62D","Data":{"Translated":"Welcome to Beijing"},"Code":"200"}

core SDK

aliyun-python-sdk-core

SDK 安装参考链接:阿里云新版人脸识别 Python 使用示例教程

Code Sample

from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.request import CommonRequest

# DefaultProfile.getProfile的参数分别是地域,access_key_id, access_key_secret
client = AcsClient('***************', '***************', 'cn-hangzhou')

request = CommonRequest()
request.set_method("POST")
request.set_domain("mt.cn-hangzhou.aliyuncs.com")
request.set_action_name("TranslateGeneral")
request.set_version("2018-10-12")
request.set_accept_format('json')
request.add_body_params("FormatType", "text")
request.add_body_params("Scene", "general")
request.add_body_params("SourceLanguage", "zh")
request.add_body_params("SourceText", "中国人民共和国")

request.add_body_params("TargetLanguage", "en")

response = client.get_response(request)
response_str = str(response[2], 'utf-8')  # bytes 转 string
print(response_str)  # 打印输出结果

The Result

{"RequestId":"161E51D3-C3D2-49B4-B2B2-2CC9AC680567","Data":{"Translated":"People's Republic of China"},"Code":"200"}

参考链接

机器翻译通用版调用指南
阿里云常见参数获取位置

相关文章
|
3天前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
66 35
|
27天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
68 2
|
1月前
|
弹性计算 安全 开发工具
灵码评测-阿里云提供的ECS python3 sdk做安全组管理
批量变更阿里云ECS安全组策略(批量变更)
|
2月前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
532 3
|
5月前
|
弹性计算 API 开发工具
揭秘Python与阿里云API的神秘邂逅!流式处理的魔法之旅,一场颠覆想象的技术盛宴!
【8月更文挑战第15天】在数字世界的广阔舞台上,Python与阿里云API的相遇,就像是一场命中注定的邂逅。它们携手共舞,为我们带来了流式处理的魔法之旅。本文将揭开这场神秘邂逅的面纱,带你领略Python与阿里云API之间的奇妙互动。让我们一起踏上这场颠覆想象的技术盛宴,探索流式处理的无限可能!
94 7
|
5月前
|
弹性计算 JSON 开发工具
"一键玩转阿里云ECS!Python大神揭秘:如何自动化创建镜像并跨地域复制,让你的云资源部署秒变高效达人!"
【8月更文挑战第14天】本文介绍如何使用Python与阿里云SDK自动化管理ECS镜像,包括创建镜像及跨地域复制,以优化云资源部署。首先安装`aliyun-python-sdk-ecs`并配置阿里云凭证。接着,通过Python脚本实现镜像创建与复制功能,简化日常运维工作并增强灾难恢复能力。注意权限及费用问题。
110 2
|
5月前
|
关系型数据库 数据库 数据安全/隐私保护
"告别繁琐!Python大神揭秘:如何一键定制阿里云RDS备份策略,让数据安全与效率并肩飞,轻松玩转云端数据库!"
【8月更文挑战第14天】在云计算时代,数据库安全至关重要。阿里云RDS提供自动备份,但标准策略难以适应所有场景。传统手动备份灵活性差、管理成本高且恢复效率低。本文对比手动备份,介绍使用Python自定义阿里云RDS备份策略的方法,实现动态调整备份频率、集中管理和智能决策,提升备份效率与数据安全性。示例代码演示如何创建自动备份任务。通过自动化与智能化备份管理,支持企业数字化转型。
124 2
|
6月前
|
消息中间件 分布式计算 DataWorks
DataWorks产品使用合集之如何使用Python和阿里云SDK读取OSS中的文件
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
6月前
|
分布式计算 数据可视化 大数据
阿里云大牛熬夜整理的Python大数据小抄,GitHub星标125K!
Python 是一种流行的编程语言,在大数据领域有广泛的应用。Python 拥有丰富的库和工具,可用于数据处理、分析和可视化。 在大数据处理方面,Python 可以与 Hadoop、Spark 等大数据框架集成,实现大规模数据的处理和分析。它也适用于数据清洗、数据转换、数据挖掘等任务。 此外,Python 的数据分析库如 Pandas、NumPy 和 Matplotlib 等,提供了强大的数据处理和可视化功能,使得数据分析变得更加简单和高效。
|
6月前
|
分布式计算 数据可视化 大数据
阿里云大牛熬夜整理的Python大数据小抄,GitHub星标125K!
Python 是一种流行的编程语言,在大数据领域有广泛的应用。Python 拥有丰富的库和工具,可用于数据处理、分析和可视化。 在大数据处理方面,Python 可以与 Hadoop、Spark 等大数据框架集成,实现大规模数据的处理和分析。它也适用于数据清洗、数据转换、数据挖掘等任务。 此外,Python 的数据分析库如 Pandas、NumPy 和 Matplotlib 等,提供了强大的数据处理和可视化功能,使得数据分析变得更加简单和高效。

热门文章

最新文章