好程序员大数据培训分享大数据两大核心技术

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

  好程序员大数据培训分享大数据两大核心技术,今天小编给大家先分享一下大数据的两大核心技术,知己知彼才能百战不殆,学习大数据技术也是一样的道理,要先有一个清晰的了解,才能确保自己全身心的投入学习。
  Hadoop是什么?
  Hadoop在2006年开始成为雅虎项目,随后晋升为顶级Apache开源项目。它是一种通用的分布式系统基础架构,具有多个组件:Hadoop分布式文件系统(HDFS),它将文件以Hadoop本机格式存储并在集群中并行化; YARN,协调应用程序运行时的调度程序; MapReduce,这是实际并行处理数据的算法。Hadoop使用Java编程语言构建,其上的应用程序也可以使用其他语言编写。通过一个Thrift客户端,用户可以编写MapReduce或者Python代码。
  除了这些基本组件外,Hadoop还包括Sqoop,它将关系数据移入HDFS; Hive,一种类似SQL的接口,允许用户在HDFS上运行查询; Mahout,机器学习。除了将HDFS用于文件存储之外,Hadoop现在还可以配置使用S3 buckets或Azure blob作为输入。
  它可以通过Apache发行版开源,也可以通过Cloudera(规模和范围最大的Hadoop供应商),MapR或HortonWorks等厂商提供。
  Spark是什么?
  Spark是一个较新的项目,在2012年诞生在加州大学伯克利分校的AMPLab。它也是一个顶级Apache项目,专注于在集群中并行处理数据,一大区别在于它在内存中运行。
  类似于Hadoop读取和写入文件到HDFS的概念,Spark使用RDD(弹性分布式数据集)处理RAM中的数据。Spark以独立模式运行,Hadoop集群可用作数据源,也可与Mesos一起运行。在后一种情况下,Mesos主站将取代Spark主站或YARN以进行调度。
  Spark是围绕Spark Core构建的,Spark Core是驱动调度,优化和RDD抽象的引擎,并将Spark连接到正确的文件系统(HDFS,S3,RDBM或Elasticsearch)。Spark Core上还运行了几个库,包括Spark SQL,允许用户在分布式数据集上运行类似SQL的命令,用于机器学习的MLLib,用于解决图形问题的GraphX以及允许输入连续流式日志数据的Streaming。
  Spark有几个API。原始界面是用Scala编写的,并且由于大量数据科学家的使用,还添加了Python和R接口。Java是编写Spark作业的另一种选择。
  Databricks是由Spark创始人Matei Zaharia创立的公司,现在负责    Spark开发并为客户提供Spark分销。
  Hadoop和spark两个大数据的核心技术的基础讲解在此就顺应结束了,想要提升自己的技术,想要突破自己的技术领域,欢迎撩小编,已经为你准备好了全套的大数据学习资料!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
31 2
|
25天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
86 4
|
8天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
8天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
11天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
26 3
|
11天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
40 2
|
14天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
46 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
62 2
|
17天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
57 1
|
1月前
|
分布式计算 运维 大数据
我的程序员之路03:我和大数据
我的程序员之路03:我和大数据