全球CT影像20秒诊断,阿里云为新冠AI辅助诊断系统加速

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
公网NAT网关,每月750个小时 15CU
简介: 诊断一位新冠肺炎患者,医生肉眼要阅读数百幅CT影像,花费15-20分钟时间,而通过新冠病毒AI辅助诊断系统,只需要20S。阿里云网络帮助澳门科技大学及科研团队,成功在云上部署AI辅助诊断系统,通过科技抗击疫情

新冠病毒全球爆发

2020年注定是不平凡的一年,新型冠状病毒肆虐全球,对于每个人来说都是一场灾难。
根据丁香园统计的数据,截止到2020年5月29日,全球新冠(COVID-19)累计确诊病例5,593,631人,累计死亡353,334人。虽然中国疫情已经进入尾声,但是全球疫情新增确诊病例却呈现持续上升趋势。

毫无疑问,COVID-19不是一座城市的疫情,也不是一个国家的疫情,而是全世界的疫情,没有人能够置身事外,需要共同面对。

诊断一位患者,医生要肉眼阅读数百幅CT影像

一般来说,一个病人的CT影像包含数百张切面,即使经验丰富的医生也需要花费大约15-20分钟的时间去阅读CT影像,才能得到准确的诊断。

在新冠疫情爆发期,疑似患者的CT影像被证实成为筛查新冠肺炎的高效手段,这就代表每个医生每天需要进行批量CT影像的读片判断,无疑这个工作量是惊人的。同时依靠医生肉眼识别病灶微小的变化会花费大量时间,不仅诊断效率低,也会造成医生压力大,患者等待时间长。

50万份CT训练,澳科大开发新冠肺炎AI辅助诊断系统

在疫情初期,澳门科技大学医学院张康教授团队便携手中国科学院、国家生物信息中心、清华大学、中山大学孙逸仙纪念医院、广州再生医学与健康广东省实验室、四川大学华西医院等团队,联合应急开发了基于胸部CT和X-ray影像学的新冠肺炎AI辅助诊断系统。

该科研团队在分析了超50万份临床影像学数据的基础上,利用了深度学习、迁移学习、语义分割等多种人工智慧前沿技术,辅助临床医生进行新冠肺炎的快速诊断和定量分析。该AI模型以高精准度和高效率的优势,不仅可以辅助临床医生做诊断决策,提高诊断准确率,还可以减少其工作量,加快诊断效率,节省患者等待时间。
图片 1.png
澳门科技大学医学院张康教授,图片源自澳科大官网

借助阿里云快速部署,实现20秒内CT影像诊断

科研团队需要让新冠肺炎AI辅助诊断系统快速上线使用,实现真正的帮助一线医生快速诊断抗击疫情。由于时间紧急,传统的线下部署方式,要进行设备及线路采购、部署、测试,再将业务部署在线下数据中心,不仅搭建周期长,而且缺乏弹性,很难满足快速部署业务的需求。

经过多次测试和研讨,阿里云以高性能计算、全球加速网络、极速存储等技术优势取得了澳科大张康团队的信赖。在全球加速网络及GPU性能的保证下,系统将影像科医生阅读CT影像缩短至20秒内,且平均准确率高达90%。

阿里云GA,30分钟实现全球加速网络部署

新冠肺炎AI辅助诊断系统想要实现一处部署,全球服务,首先要解决网络连接问题。一张稳定、高速的全球网络可以保证全球科研机构及移动办公的个人,随时随地快速上传CT文件及下载分析结果,从而实现科研成果的全球规模化应用。

阿里云为此次新冠肺炎AI诊断系统的部署提供了全球加速解决方案,通过全球加速GA产品,依托阿里巴巴遍布全球的优质传输网络,可以有效提升全球数据访问的稳定性。GA内置的TCP协议优化能力,还可以大幅提升传输性能。尤为值得一体的是,传统的专线部署周期长达数月,而采用阿里云GA构建的全球加速网络,只需要30分钟部署时间,为业务系统的快速上线提供了基础保障。

当前该系统已经在武汉市金银潭医院、中山大学孙逸仙纪念医院、中山大学第三附属医院、广州医科大附属第一医院、湖北宜昌市中心人民医院、安徽医科大学第一附属医院、新疆喀什地区第一人民医院、四川大学华西医院、澳门科技大学、美国、巴西、伊拉克等地部署,接下来会在全国及世界范围内推广应用。阿里云洛神网络团队协助高校及科研机构,用科技抗击疫情,为全球抗击COVID-19贡献一份力量。

END

相关文章
|
9天前
|
人工智能 JSON 自然语言处理
基于阿里云通义千问的AI模型应用开发指南
阿里云通义千问是阿里巴巴集团推出的多模态大语言模型平台,提供了丰富的API和接口,支持多种AI应用场景,如文本生成、图像生成和对话交互等。本文将详细介绍阿里云通义千问的产品功能,并展示如何使用其API来构建一个简单的AI应用,包括程序代码和具体操作流程,以帮助开发者快速上手。
84 3
|
5天前
|
存储 人工智能 自然语言处理
Elasticsearch Inference API增加对阿里云AI的支持
本文将介绍如何在 Elasticsearch 中设置和使用阿里云的文本生成、重排序、稀疏向量和稠密向量服务,提升搜索相关性。
40 14
Elasticsearch Inference API增加对阿里云AI的支持
|
2天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
4天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
|
7天前
|
人工智能 自然语言处理 机器人
对话阿里云CIO蒋林泉:AI时代,企业如何做好智能化系统建设?
10月18日, InfoQ《C 位面对面》栏目邀请到阿里云CIO及aliyun.com负责人蒋林泉(花名:雁杨),就AI时代企业CIO的角色转变、企业智能化转型路径、AI落地实践与人才培养等主题展开了讨论。
|
人工智能 编解码 自然语言处理
助力新冠CT检测,依图4天上线AI系统!准确率达97.3%,已服务数万人
助力新冠CT检测,依图4天上线AI系统!准确率达97.3%,已服务数万人
260 0
|
3天前
|
机器学习/深度学习 人工智能 供应链
AI技术在医疗领域的应用与未来展望###
本文深入探讨了人工智能(AI)技术在医疗领域的多种应用及其带来的革命性变化,从疾病诊断、治疗方案优化到患者管理等方面进行了详细阐述。通过具体案例和数据分析,展示了AI如何提高医疗服务效率、降低成本并改善患者体验。同时,文章也讨论了AI技术在医疗领域面临的挑战和未来发展趋势,为行业从业者和研究人员提供参考。 ###
|
3天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗健康领域的应用与前景
随着科技的不断进步,人工智能(AI)技术已经深入到我们生活的方方面面,特别是在医疗健康领域。本文将探讨AI在医疗健康领域的应用现状、面临的挑战以及未来的发展前景。
|
4天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
13 3