使用canal增量订阅MySQL binlog

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: canal基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql。

【转载请注明出处】:https://juejin.im/post/5ecf04ec5188254316147950

基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql。
早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此开启了一段新纪元。

  1. 目前内部版本已经支持mysql和oracle部分版本的日志解析,当前的canal开源版本支持5.7及以下的版本(阿里内部mysql 5.7.13, 5.6.10, mysql 5.5.18和5.1.40/48)

基于日志增量订阅&消费支持的业务:

  • 数据库镜像
  • 数据库实时备份
  • 多级索引 (卖家和买家各自分库索引)
  • search build
  • 业务cache刷新
  • 价格变化等重要业务消息

1、Canal工作原理

mysql主备复制实现

image.png

从上层来看,复制分成三步:

  1. master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events,可以通过show binlog events进行查看);
  2. slave将master的binary log events拷贝到它的中继日志(relay log);
  3. slave重做中继日志中的事件,将改变反映它自己的数据。
canal的工作原理:

image.png

原理相对比较简单:

  1. canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议
  2. mysql master收到dump请求,开始推送binary log给slave(也就是canal)
  3. canal解析binary log对象(原始为byte流)
架构

image.png
说明:

  • server代表一个canal运行实例,对应于一个jvm
  • instance对应于一个数据队列 (1个server对应1..n个instance)

instance模块:

  • eventParser (数据源接入,模拟slave协议和master进行交互,协议解析)
  • eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作)
  • eventStore (数据存储)
  • metaManager (增量订阅&消费信息管理器)
EventParser设计

大致过程:
image.png
整个parser过程大致可分为几步:

  1. Connection获取上一次解析成功的位置 (如果第一次启动,则获取初始指定的位置或者是当前数据库的binlog位点)
  2. Connection建立链接,发送BINLOG_DUMP指令
    // 0. write command number

// 1. write 4 bytes bin-log position to start at
// 2. write 2 bytes bin-log flags
// 3. write 4 bytes server id of the slave
// 4. write bin-log file name

  1. Mysql开始推送Binaly Log
  2. 接收到的Binaly Log的通过Binlog parser进行协议解析,补充一些特定信息
    // 补充字段名字,字段类型,主键信息,unsigned类型处理
  3. 传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
  4. 存储成功后,定时记录Binaly Log位置

mysql的Binlay Log网络协议:
image.png
说明:

https://dev.mysql.com/doc/internals/en/event-structure.html
https://dev.mysql.com/doc/internals/en/binlog-event.html

EventSink设计

image.png

说明:

  • 数据过滤:支持通配符的过滤模式,表名,字段内容等
  • 数据路由/分发:解决1:n (1个parser对应多个store的模式)
  • 数据归并:解决n:1 (多个parser对应1个store)
  • 数据加工:在进入store之前进行额外的处理,比如join

数据1:n业务
为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在mysql上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。
所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注

数据n:1业务
同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。
所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并.

EventStore设计
  1. 目前仅实现了Memory内存模式,后续计划增加本地file存储,mixed混合模式
  2. 借鉴了Disruptor的RingBuffer的实现思路

RingBuffer设计:
image

定义了3个cursor

  • Put : Sink模块进行数据存储的最后一次写入位置
  • Get : 数据订阅获取的最后一次提取位置
  • Ack : 数据消费成功的最后一次消费位置

借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:
image

实现说明:

  • Put/Get/Ack cursor用于递增,采用long型存储
  • buffer的get操作,通过取余或者与操作。(与操作: cusor & (size - 1) , size需要为2的指数,效率比较高)
Instance设计

image.png

instance代表了一个实际运行的数据队列,包括了EventPaser,EventSink,EventStore等组件。

抽象了CanalInstanceGenerator,主要是考虑配置的管理方式:

  • manager方式: 和你自己的内部web console/manager系统进行对接。(目前主要是公司内部使用)
  • spring方式:基于spring xml + properties进行定义,构建spring配置.
Server设计

image.png

server代表了一个canal的运行实例,为了方便组件化使用,特意抽象了Embeded(嵌入式) / Netty(网络访问)的两种实现

  • Embeded : 对latency和可用性都有比较高的要求,自己又能hold住分布式的相关技术(比如failover)
  • Netty : 基于netty封装了一层网络协议,由canal server保证其可用性,采用的pull模型,当然latency会稍微打点折扣,不过这个也视情况而定。(阿里系的notify和metaq,典型的push/pull模型,目前也逐步的在向pull模型靠拢,push在数据量大的时候会有一些问题)
增量订阅/消费设计

image.png
具体的协议格式,可参见:CanalProtocol.proto

get/ack/rollback协议介绍:

  • Message getWithoutAck(int batchSize),允许指定batchSize,一次可以获取多条,每次返回的对象为Message,包含的内容为:

    1. batch id 唯一标识
    2. entries 具体的数据对象,对应的数据对象格式:EntryProtocol.proto
  • void rollback(long batchId),顾命思议,回滚上次的get请求,重新获取数据。基于get获取的batchId进行提交,避免误操作
  • void ack(long batchId),顾命思议,确认已经消费成功,通知server删除数据。基于get获取的batchId进行提交,避免误操作

canal的get/ack/rollback协议和常规的jms协议有所不同,允许get/ack异步处理,比如可以连续调用get多次,后续异步按顺序提交ack/rollback,项目中称之为流式api.

流式api设计的好处:

  • get/ack异步化,减少因ack带来的网络延迟和操作成本 (99%的状态都是处于正常状态,异常的rollback属于个别情况,没必要为个别的case牺牲整个性能)
  • get获取数据后,业务消费存在瓶颈或者需要多进程/多线程消费时,可以不停的轮询get数据,不停的往后发送任务,提高并行化. (作者在实际业务中的一个case:业务数据消费需要跨中美网络,所以一次操作基本在200ms以上,为了减少延迟,所以需要实施并行化)

流式api设计:
image.png

  • 每次get操作都会在meta中产生一个mark,mark标记会递增,保证运行过程中mark的唯一性
  • 每次的get操作,都会在上一次的mark操作记录的cursor继续往后取,如果mark不存在,则在last ack cursor继续往后取
  • 进行ack时,需要按照mark的顺序进行数序ack,不能跳跃ack. ack会删除当前的mark标记,并将对应的mark位置更新为last ack cusor
  • 一旦出现异常情况,客户端可发起rollback情况,重新置位:删除所有的mark, 清理get请求位置,下次请求会从last ack cursor继续往后取
HA机制设计

canal的ha分为两部分,canal server和canal client分别有对应的ha实现

  • canal server: 为了减少对mysql dump的请求,不同server上的instance要求同一时间只能有一个处于running,其他的处于standby状态.
  • canal client: 为了保证有序性,一份instance同一时间只能由一个canal client进行get/ack/rollback操作,否则客户端接收无法保证有序。

整个HA机制的控制主要是依赖了zookeeper的几个特性,watcher和EPHEMERAL节点(和session生命周期绑定),可以看下我之前zookeeper的相关文章。

Canal Server:
image.png

大致步骤:

  1. canal server要启动某个canal instance时都先向zookeeper进行一次尝试启动判断 (实现:创建EPHEMERAL节点,谁创建成功就允许谁启动)
  2. 创建zookeeper节点成功后,对应的canal server就启动对应的canal instance,没有创建成功的canal instance就会处于standby状态
  3. 一旦zookeeper发现canal server A创建的节点消失后,立即通知其他的canal server再次进行步骤1的操作,重新选出一个canal server启动instance.
  4. canal client每次进行connect时,会首先向zookeeper询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试connect.

Canal Client的方式和canal server方式类似,也是利用zookeeper的抢占EPHEMERAL节点的方式进行控制.

2、环境要求

  • jdk建议使用1.6.25以上的版本
  • 当前的canal开源版本支持5.7及以下的版本

    1. mysql4.x版本没有经过严格测试,理论上是可以兼容
  • 开启mysql的binlog写入功能,并且配置binlog模式为row

    [mysqld]  
    log-bin=mysql-bin  
    binlog-format=ROW #选择row模式  
    server_id=1 #配置mysql replaction需要定义,不能和canal的slaveId重复  

    检查配置是否有效

    #查看binlog的开启状态及文件名
    mysql> show variables like '%log_bin%';
    #查看binlog当前的格式
    mysql> show variables like '%format%';
    #查看binlog文件列表
    mysql> show binary logs; 
    #查看binlog的状态
    mysql> show master status;
  • canal的原理是模拟自己为mysql slave,所以这里一定需要做为mysql slave的相关权限

    mysql> CREATE USER canal IDENTIFIED BY 'canal';    
    mysql> GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';  
    # -- mysql> GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;  
    mysql> FLUSH PRIVILEGES; 

    针对已有的账户可通过grants查询权限:

    mysql> show grants for 'canal' ; 

3、部署

获取发布包

方法1: (直接下载)

访问:https://github.com/alibaba/canal/releases,会列出所有历史的发布版本包
当前的最新版本是1.1.3

wget https://github.com/alibaba/canal/releases/download/canal-1.1.3/canal.deployer-1.1.3.tar.gz

方法2:  (自己编译)

git clone git@github.com:alibaba/canal.git
git co canal-1.1.3 #切换到对应的版本上
mvn clean install -Denv=release

执行完成后,会在canal工程根目录下生成一个target目录,里面会包含一个 canal.deployer-1.1.3.tar.gz

配置介绍

介绍配置之前,先了解下canal的配置加载方式:
image.png

canal配置方式有两种:

  1. ManagerCanalInstanceGenerator: 基于manager管理的配置方式,目前alibaba内部配置使用这种方式。大家可以实现CanalConfigClient,连接各自的管理系统,即可完成接入。
  2. SpringCanalInstanceGenerator:基于本地spring xml的配置方式,目前开源版本已经自带该功能所有代码,建议使用
Spring配置方式介绍

spring配置的原理是将整个配置抽象为两部分:

  • xxxx-instance.xml   (canal组件的配置定义,可以在多个instance配置中共享)
  • xxxx.properties   (每个instance通道都有各自一份定义,因为每个mysql的ip,帐号,密码等信息不会相同)

通过spring的PropertyPlaceholderConfigurer通过机制将其融合,生成一份instance实例对象,每个instance对应的组件都是相互独立的,互不影响

properties配置文件
properties配置分为两部分:

  • canal.properties  (系统根配置文件)
  • instance.properties  (instance级别的配置文件,每个instance一份)

canal.properties介绍:
canal配置主要分为两部分定义:

  1. instance列表定义 (列出当前server上有多少个instance,每个instance的加载方式是spring/manager等)
  2. common参数定义,比如可以将instance.properties的公用参数,抽取放置到这里,这样每个instance启动的时候就可以共享. 【instance.properties配置定义优先级高于canal.properties】

instance.properties介绍:

  1. 在canal.properties定义了canal.destinations后,需要在canal.conf.dir对应的目录下建立同名的文件
    比如:

     canal.destinations = example1,example2

这时需要创建example1和example2两个目录,每个目录里各自有一份instance.properties.

  1. canal自带了一份instance.properties demo,可直接复制conf/example目录进行配置修改
  1. 如果canal.properties未定义instance列表,但开启了canal.auto.scan时
  • server第一次启动时,会自动扫描conf目录下,将文件名做为instance name,启动对应的instance
  • server运行过程中,会根据canal.auto.scan.interval定义的频率,进行扫描

    1. 发现目录有新增,启动新的instance
    2. 发现目录有删除,关闭老的instance
    3. 发现对应目录的instance.properties有变化,重启instance

instance.xml配置文件
目前默认支持的instance.xml有以下几种:

  • spring/memory-instance.xml
  • spring/default-instance.xml
  • spring/group-instance.xml

在介绍instance配置之前,先了解一下canal如何维护一份增量订阅&消费的关系信息:

  • 解析位点 (parse模块会记录,上一次解析binlog到了什么位置,对应组件为:CanalLogPositionManager)
  • 消费位点 (canal server在接收了客户端的ack后,就会记录客户端提交的最后位点,对应的组件为:CanalMetaManager)

对应的两个位点组件,目前都有几种实现:

  • memory (memory-instance.xml中使用)
  • zookeeper
  • mixed
  • period (default-instance.xml中使用,集合了zookeeper+memory模式,先写内存,定时刷新数据到zookeeper上)

memory-instance.xml:
   所有的组件(parser , sink , store)都选择了内存版模式,记录位点的都选择了memory模式,重启后又会回到初始位点进行解析 

**特点:** 速度最快,依赖最少(不需要zookeeper)

   场景:一般应用在quickstart,或者是出现问题后,进行数据分析的场景,不应该将其应用于生产环境

default-instance.xml:
   store选择了内存模式,其余的parser/sink依赖的位点管理选择了持久化模式,目前持久化的方式主要是写入zookeeper,保证数据集群共享. 
   特点: 支持HA
   场景: 生产环境,集群化部署. 

group-instance.xml:
    主要针对需要进行多库合并时,可以将多个物理instance合并为一个逻辑instance,提供客户端访问。

**场景:** 分库业务。 比如产品数据拆分了4个库,每个库会有一个instance,如果不用group,业务上要消费数据时,需要启动4个客户端,分别链接4个instance实例。使用group后,可以在canal server上合并为一个逻辑instance,只需要启动1个客户端,链接这个逻辑instance即可. 

instance.xml设计初衷:
  允许进行自定义扩展,比如实现了基于数据库的位点管理后,可以自定义一份自己的instance.xml,整个canal设计中最大的灵活性在于此

HA模式配置

修改canal.properties

canal.zkServers =127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
canal.destinations = example #当前server上部署的instance列表
canal.instance.global.spring.xml = classpath:spring/default-instance.xml

修改instance.properties

canal.instance.mysql.slaveId=1234 #mysql集群配置中的serverId概念,需要保证和当前mysql集群中id唯一 (v1.1.x版本之后canal会自动生成,不需要手工指定)
canal.instance.master.address=127.0.0.1:3306
canal.instance.dbUsername=canal
canal.instance.dbPassword=canal
canal.instance.filter.regex=.*\\..* #mysql 数据解析关注的表,Perl正则表达式.多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\)

注意: 其他机器上的instance目录的名字需要保证完全一致,HA模式是依赖于instance name进行管理,同时必须都选择default-instance.xml配置,canal.instance.mysql.slaveId应该唯一。
执行启动脚本startup.sh,启动后,你可以查看logs/example/example.log,只会看到一台机器上出现了启动成功的日志,其他的处于standby状态。

客户端消费数据

创建mvn工程,修改pom.xml,添加依赖:

<dependency>
  <groupId>com.alibaba.otter</groupId>
  <artifactId>canal.client</artifactId>
  <version>1.1.3</version>
</dependency>

CanalClientTest代码

package com.stepper.canalclient;

import java.net.InetSocketAddress;
import java.util.List;


import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.common.utils.AddressUtils;
import com.alibaba.otter.canal.protocol.Message;
import com.alibaba.otter.canal.protocol.CanalEntry.Column;
import com.alibaba.otter.canal.protocol.CanalEntry.Entry;
import com.alibaba.otter.canal.protocol.CanalEntry.EntryType;
import com.alibaba.otter.canal.protocol.CanalEntry.EventType;
import com.alibaba.otter.canal.protocol.CanalEntry.RowChange;
import com.alibaba.otter.canal.protocol.CanalEntry.RowData;
 
public class CanalClientTest {

    public static void main(String args[]) { 
        String zkServers="127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183";
        String destination="example";
        CanalConnector connector = CanalConnectors.newClusterConnector(zkServers,destination,"","");
        int batchSize = 1000;
        int emptyCount = 0;
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
//            connector.rollback();
            int totalEmptyCount = 120;
            while (emptyCount < totalEmptyCount) {
                Message message = connector.getWithoutAck(batchSize); // 获取指定数量的数据
//                System.out.println(message.toString());
                long batchId = message.getId();
                int size = message.getEntries().size();
                if (batchId == -1 || size == 0) {
                    emptyCount++;
                    System.out.println("empty count : " + emptyCount);
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                    }
                } else {
                    emptyCount = 0;
                    // System.out.printf("message[batchId=%s,size=%s] \n", batchId, size);
                    printEntry(message.getEntries());
                }

                connector.ack(batchId); // 提交确认
                // connector.rollback(batchId); // 处理失败, 回滚数据
            }

            System.out.println("empty too many times, exit");
        } finally {
            connector.disconnect();
        }
    }

    private static void printEntry(List<Entry> entrys) {
        for (Entry entry : entrys) {
            if (entry.getEntryType() == EntryType.TRANSACTIONBEGIN || entry.getEntryType() == EntryType.TRANSACTIONEND) {
                continue;
            }

            RowChange rowChage = null;
            try {
                rowChage = RowChange.parseFrom(entry.getStoreValue());
            } catch (Exception e) {
                throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(),
                        e);
            }

            EventType eventType = rowChage.getEventType();
            System.out.println(String.format("================ binlog[%s:%s] , name[%s,%s] , eventType : %s",
                    entry.getHeader().getLogfileName(), entry.getHeader().getLogfileOffset(),
                    entry.getHeader().getSchemaName(), entry.getHeader().getTableName(),
                    eventType));

            for (RowData rowData : rowChage.getRowDatasList()) {
                if (eventType == EventType.DELETE) {
                    printColumn(rowData.getBeforeColumnsList());
                } else if (eventType == EventType.INSERT) {
                    printColumn(rowData.getAfterColumnsList());
                } else {
                    System.out.println("-------> before");
                    printColumn(rowData.getBeforeColumnsList());
                    System.out.println("-------> after");
                    printColumn(rowData.getAfterColumnsList());
                }
            }
        }
    }

    private static void printColumn(List<Column> columns) {
        for (Column column : columns) {
            System.out.println(column.getName() + " : " + column.getValue() + "    update=" + column.getUpdated());
        }
    }


}

启动Canal Client后,操作数据库变更数据即可从控制台从看到消息。
更多参数及介绍可以参考官方wiki文档.

注意:

  • 生产环境下尽量采用HA的方式。
  • 关于Canal消费binlog的顺序,为保证binlog严格有序,尽量不要用多线程。
  • 如果Canal消费binlog后的数据要发往kafka,又要保证有序,kafka topic 的partition可以设置成1个分区。

【转载请注明出处】: https://juejin.im/post/5ecf04ec5188254316147950

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
22天前
|
存储 SQL 关系型数据库
mysql 的ReLog和BinLog区别
MySQL中的重做日志和二进制日志是确保数据库稳定性和可靠性的关键组件。重做日志主要用于事务的持久性和原子性,通过记录数据页的物理修改信息来恢复未提交的事务;而二进制日志记录SQL语句的逻辑变化,支持数据复制、恢复和审计。两者在写入时机、存储方式及配置参数等方面存在显著差异。
|
5天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
29 2
|
22天前
|
SQL 存储 缓存
MySQL进阶突击系列(02)一条更新SQL执行过程 | 讲透undoLog、redoLog、binLog日志三宝
本文详细介绍了MySQL中update SQL执行过程涉及的undoLog、redoLog和binLog三种日志的作用及其工作原理,包括它们如何确保数据的一致性和完整性,以及在事务提交过程中各自的角色。同时,文章还探讨了这些日志在故障恢复中的重要性,强调了合理配置相关参数对于提高系统稳定性的必要性。
|
1月前
|
关系型数据库 MySQL 数据库
【赵渝强老师】MySQL的binlog日志文件
MySQL的binlog日志记录了所有对数据库的更改操作(不包括SELECT和SHOW),主要用于主从复制和数据恢复。binlog有三种模式,可通过设置binlog_format参数选择。示例展示了如何启用binlog、设置格式、查看日志文件及记录的信息。
133 6
|
1月前
|
存储 SQL 关系型数据库
mysql 的ReLog和BinLog区别
MySQL中的重做日志(Redo Log)和二进制日志(Binary Log)是两种重要的日志系统。重做日志主要用于保证事务的持久性和原子性,通过记录数据页的物理修改信息来恢复未提交的事务更改。二进制日志则记录了数据库的所有逻辑变化操作,用于数据的复制、恢复和审计。两者在写入时机、存储方式、配置参数和使用范围上有所不同,共同确保了数据库的稳定性和可靠性。
|
5天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
19 3
|
5天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
24 3
|
18天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
131 15
|
12天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
19天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。