机器学习决策树ID3算法,手把手教你用Python实现

简介:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


决策树的定义

决策树是我本人非常喜欢的机器学习模型,非常直观容易理解,并且和数据结构的结合很紧密。我们学习的门槛也很低,相比于那些动辄一堆公式的模型来说,实在是简单得多。

其实我们生活当中经常在用决策树,只是我们自己没有发现。决策树的本质就是一堆if-else的组合,举个经典的例子,比如我们去小摊子上买西瓜。水果摊的小贩都是怎么做的?拿起西瓜翻滚一圈,看一眼,然后伸手一拍,就知道西瓜甜不甜。我们把这些动作相关的因素去除,把核心本质提取出来,基本上是这么三条:

  • 西瓜表面的颜色,颜色鲜艳的往往比较甜
  • 西瓜拍打的声音,声音清脆的往往比较甜
  • 西瓜是否有瓜藤,有藤的往往比较甜

这三条显然不是平等的,因为拍打的声音是最重要的,可能其次表面颜色,最后是瓜藤。所以我们挑选的时候,肯定也是先听声音,然后看瓜藤,最后看颜色。我们把其中的逻辑抽象出来然后整理一下,变成一棵树结构,于是这就成了决策树。

1

这个决策树本质上做的还是分类的工作,将西瓜分成了甜的和不甜的。也就是说决策树是一个树形的分类器,这个也是决策树的基本定义。另外从图中我们还有一个启示,在这个问题当中,决策树的特征都是离散值,而不是连续值。也就是说决策树可以接受像是类别、标识这样非数值型的特征,而逻辑回归这些模型则不太行。

如果你对这些细节还理解不深刻也没有关系,我们可以先放一放,至少我们明白了决策树的大概结构以及工作原理。

对于每一条数据来说,它分类的过程其实就是在决策树上遍历的过程。每到一个中间节点都会面临一次判断,根据判断的结果选择下一个子树。而树上的叶子节点代表一种分类,当数据到了叶子节点,这个叶子节点的值就代表它的分类结果。

决策树的训练

明白了决策树的结构和工作原理之后,下面就是训练的过程了。

在理清楚原理之前,我们先来看下数据。我们根据上面决策树的结构,很容易发现,训练数据应该是这样的表格:

2

那么最后我们想要实现什么效果呢?当然是得到的准确率越高越好,而根据决策树的原理,树上的每一个叶子节点代表一个分类。那么我们显然希望最后到达叶子节点的数据尽可能纯粹,举个例子,如果一个叶子节点代表甜,那么我们肯定希望根据树结构被划归到这里的数据尽可能都是甜的,不甜的比例尽可能低。

那么我们怎么实现这一点呢?这就需要我们在越顶层提取规则的时候,越选择一些区分度大的特征作为切分的依据。所谓区分度大的特征,也就是能够将数据很好分开的特征。这是明显的贪心做法,使用这样的方法,我们只可以保证在尽可能高层取得尽可能好的分类结果,但是并不能保证这样得到的模型是最优的。生成最优的决策树本质上也是一个NP问题,我们当前的做法可以保证在尽量短的时间内获得一个足够优秀的解,但是没办法保证是最优解。

回到问题本身,我们想要用区分度大的特征来进行数据划分。要做到这一点的前提就是首先定义区分度这个概念,将它量化,这样我们才好进行选择。否则总不能凭感觉去衡量区分度,好在这个区分度还是很好解决的,我们只需要再一次引入信息熵的概念就可以了。

信息熵与信息增益

信息熵这个词很令人费解,它英文原文是information entropy,其实一样难以理解。因为entropy本身是物理学和热力学当中的概念,用来衡量物体分散的不均匀程度。也就是说熵越大,说明物体分散得程度越大,可以简单理解成越散乱。比如我们把房间里一盒整理好的乒乓球打翻,那么里面的乒乓球显然会散乱到房间的各个地方,这个散乱的过程可以理解成熵增大的过程。

信息熵也是一样的含义,用来衡量一份信息的散乱程度。熵越大,说明信息越杂乱无章,否则说明信息越有调理。信息熵出自大名鼎鼎的信息学巨著《信息论》,它的作者就是赫赫有名的香农。但是这个词并不是香农原创,据说是计算机之父冯诺依曼取的,他去这个名字的含义也很简单,因为大家都不明白这个词究竟是什么意思。

之前我们曾经在介绍交叉熵的时候详细解释过这个概念,我们来简单回顾一下。对于一个事件X来说,假设它发生的概率是P(X),那么这个事件本身的信息量就是:

3

比如说世界杯中国队夺冠的概率是1/128,那么我们需要用8个比特才能表示,说明它信息量很大。假如巴西队夺冠的概率是1/4,那么只要2个比特就足够了,说明它的信息量就很小。同样一件事情,根据发生的概率不同,它的信息量也是不同的。

那么信息熵的含义其实就是信息量的期望,也就是用信息量乘上它的概率:

4

同样,假设我们有一份数据集合,其中一共有K类样本,每一类样本所占的比例是6
,那么我们把这个比例看成是概率的话,就可以写出这整个集合的信息熵:

5

理解了信息熵的概念之后,再来看信息增益就很简单了。信息增益说白了就是我们划分前后信息熵的变化量,假设我们选择了某一个特征进行切分,将数据集D切分成了D1和D2。那么7
就叫做信息增益,也就是切分之后信息熵与之前的变化量。

我们根据熵的定义可以知道,如果数据变得纯粹了,那么信息熵应该会减少。减少得越多,说明切分的效果越好。所以我们就找到了衡量切分效果的方法,就是信息增益。我们根据信息增益的定义,可以很简单地理出整个决策树建立的过程。就是我们每次在选择切分特征的时候,都会遍历所有的特征,特征的每一个取值对应一棵子树,我们通过计算信息增益找到切分之后增益最大的特征。上层的结构创建好了之后, 通过递归的形式往下继续建树,直到切分之后的数据集变得纯粹,或者是所有特征都使用结束了为止。

这个算法称为ID3算法,它也是决策树最基础的构建算法。这里有一个小细节, 根据ID3算法的定义,每一次切分选择的是特征,而不是特征的取值。并且被选中作为切分特征的特征的每一个取值都会建立一棵子树,也就是说每一个特征在决策树当中都只会最多出现一次。因为使用一次之后,这个特征的所有取值就都被使用完了。

举个例子,比如拍打声音是否清脆这个特征,我们在一开始就选择了它。根据它的两个取值,是和否都建立了一棵子树。那么如果我们在子树当中再根据这个特征拆分显然没有意义,因为子树中的所有数据的这个特征都是一样的。另外,ID3算法用到的所有特征必须是离散值,因为连续值无法完全切分。如果西瓜的重量是一个特征,那么理论上来说所有有理数都可能是西瓜的质量,我们显然不可能穷尽所有的取值。
这一点非常重要,不仅关系到我们实现的决策树是否正确,也直接关系到我们之后理解其他的建树算法。

代码实现

理解了算法原理和流程之后,就到了我们紧张刺激的编码环节。老实讲决策树的算法实现并不难,比之前的FP-growth还要简单,大家不要有压力。

首先,我们来创造实验数据:

8

这份数据模拟的是学生考试,一共考三门,一共要考到150分以上才算是通过。由于ID3算法只能接受离散值的特征,所以我们要先将连续值转成离散值,我们根据每一门的考试分数,生成三个档次。大于70分的是2档,40到70分的是1档,小于40分的是0档。

为了方便编码,我们把预测值Y放在特征的最后,并且返回这三个特征的名称,方便以后用来建树。

我们运行一下数据查看一下结果:

9

下面,我们实现计算集合信息熵的函数。这个函数也很简单,我们只需要计算出每个类别的占比,然后套用一下信息熵的公式即可。

10

有了信息熵的计算函数之后,我们接下来实现拆分函数,也就是根据特征的取值将数据集进行拆分的函数。

11

本质上就是根据特征取值归类的过程,我们可以随便调用测试一下:

12

和我们预期一样,根据特征的取值将数据分成了若干份。接下来我们就要实现核心的特征的选择函数了,也就是要选择信息增益最大的特征对数据进行切分。

13

到这里,我们所有工具方法都已经开发完了,下面就到了我们紧张刺激的建树部分了。建树其实并没有什么大不了的,无非是通过递归来重复调用上面的方法来创造每一个分支节点而已。如果你熟悉树形数据结构,会发现它和其他树形数据结构的构建过程并没有什么两样。
我们来看下代码,整个过程也只有十几行而已。

14

我们运行一下这段代码,会得到一份dict,这个dict当中的层次结构其实就是决策树的结构:

15

我们这样看可能不太清楚,但是我们把这个dict展开就得到了下图的这棵树结构:

16

我们观察一下上图当中红圈的部分,这个节点只有两个分叉,而其他的节点都有三个分叉。这并不是代码有bug,而是说明数据当中缺失了这种情况,所以少了一个分叉。这其实非常正常,当我们训练数据的样本量不够的时候,很有可能无法覆盖所有的情况,就会出现这种没有分叉的情况。

到这里虽然决策树是实现完了,但是还没有结束,还有一个关键的部分我们没有做,就是预测。我们训练完了,总得把模型用起来,显然需要一个预测的函数。这个预测的函数也简单,它介绍一条数据以及我们训练完的树结构,返回分类的结果。其实也是一个递归调用的过程:

17

我们来创造一些简单的数据测试一下:

18

基本上和我们的预期一致,说明我们决策树就实现完了。

总结

我们的决策树虽然构建完了,但是仍然有很多不完美的地方。比如说,目前我们的模型只能接受离散值的特征,如果是连续值则无法进行拆分。而且我们每个特征只能用一次,有时候我们希望能够多次使用同一个特征。在这种情况下ID3就无法实现了。所以我们还需要引入其他的优化。

在后序的文章当中我们将会讨论这些相关的优化,以及决策树这个模型本身的一些特性。如果对此感兴趣,一定不要错过。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-22
本文作者:承志
本文来自:“掘金”,了解相关信息可以关注“掘金”

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
18 2
|
9天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
25 1
|
9天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
28 1
|
15天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
5天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
6天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
5天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。

热门文章

最新文章