Flink 与 Hive 的磨合期

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在上篇文章中,笔者使用的 CDH 版本为 5.16.2,其中 Hive 版本为 1.1.0(CDH 5.x 系列 Hive 版本都不高于 1.1.0,是不是不可理解),Flink 源代码本身对 Hive 1.1.0 版本兼容性不好,存在不少问题。

回顾

在上篇文章中,笔者使用的 CDH 版本为 5.16.2,其中 Hive 版本为 1.1.0(CDH 5.x 系列 Hive 版本都不高于 1.1.0,是不是不可理解),Flink 源代码本身对 Hive 1.1.0 版本兼容性不好,存在不少问题。为了兼容目前版本,笔者基于 CDH 5.16.2 环境,对 Flink 代码进行了修改,重新打包并部署。

其实经过很多开源项目的实战,比如 Apache Atlas,Apache Spark 等,Hive 1.2.x 和 Hive 1.1.x 在大部分情况下,替换一些 Jar 包,是可以解决兼容性的问题。对于笔者的环境来说,可以使用 Hive 1.2.1 版本的一些 Jar 包来代替 Hive 1.1.0 版本的 Jar 包。在本篇文章的开始部分,笔者会解决这个问题,然后再补充上篇文章缺少的实战内容。

剪不断理还乱的问题

根据读者的反馈,笔者将所有的问题总结为三类:

  1. Flink 如何连接 Hive 除了 API 外,有没有类似 spark-sql 命令
  2. 识别不到 Hadoop 环境或配置文件找不到
  3. 依赖包、类或方法找不到

1. Flink 如何连接 Hive

有的读者不太清楚,如何配置 Flink 连接 Hive 的 Catalog,这里补充一个完整的 conf/sql-client-hive.yaml 示例:

catalogs:
- name: staginghive
     type: hive
     hive-conf-dir: /etc/hive/conf
     hive-version: 1.2.1

execution:
  planner: blink
  type: batch
  time-characteristic: event-time
  periodic-watermarks-interval: 200
  result-mode: table
  max-table-result-rows: 1000000
  parallelism: 1
  max-parallelism: 128
  min-idle-state-retention: 0
  max-idle-state-retention: 0
  current-catalog: staginghive
  current-database: ssb
  restart-strategy:
    type: fallback

deployment:
  response-timeout: 5000
  gateway-address: ""
  gateway-port: 0
  m: yarn-cluster
  yn: 2
  ys: 5
  yjm: 1024
  ytm: 2048

sql-client-hive.yaml 配置文件里面包含:

  1. Hive 配置文件 catalogs 中配置了 Hive 的配置文件路径。
  2. Yarn 配置信息 deployment 中配置了 Yarn 的配置信息。
  3. 执行引擎信息 execution 配置了 blink planner,并且使用 batch 模式。batch 模式比较稳定,适合传统的批处理作业,而且可以容错,另外中间数据落盘,建议开启压缩功能。除了 batch,Flink 也支持 streaming 模式。

■ Flink SQL CLI 工具

类似 spark-sql 命令,Flink 提供了 SQL CLI 工具,即 sql-client.sh 脚本。在 Flink 1.10 版本中,Flink SQL CLI 改进了很多功能,笔者后面讲解。

sql-client.sh 使用方式如下:

$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml

2. 识别不到 Hadoop 环境或配置文件找不到

笔者在上篇文章中提到过,在部署 Flink 的环境上部署 CDH gateway,包括 Hadoop、Hive 客户端,另外还需要配置一些环境变量,如下:

export HADOOP_CONF_DIR=/etc/hadoop/conf
export YARN_CONF_DIR=/etc/hadoop/conf
export HIVE_HOME=/opt/cloudera/parcels/CDH/lib/hive
export HIVE_CONF_DIR=/etc/hive/conf

3. 依赖包、类或方法找不到

先查看一下 Flink 家目录下的 lib 目录:

$ tree  lib
lib
├── flink-connector-hive_2.11-1.10.0.jar
├── flink-dist_2.11-1.10.0.jar
├── flink-hadoop-compatibility_2.11-1.10.0.jar
├── flink-shaded-hadoop-2-2.6.0-cdh5.16.2-9.0.jar
├── flink-table_2.11-1.10.0.jar
├── flink-table-blink_2.11-1.10.0.jar
├── hive-exec-1.1.0-cdh5.16.2.jar
├── hive-metastore-1.1.0-cdh5.16.2.jar
├── libfb303-0.9.3.jar
├── log4j-1.2.17.jar
└── slf4j-log4j12-1.7.15.jar

如果上面前两个问题都解决后,执行如下命令:

$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml

报错,报错,还是报错:

Caused by: java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory

其实在运行 sql-client.sh 脚本前,需要指定 Hadoop 环境的依赖包的路径,建议不要报错一个添加一个,除非有的读者喜欢。这里笔者提示一个方便的方式,即设置 HADOOPCLASSPATH(可以添加到 ~/.bashprofile 中)环境变量:

export HADOOP_CLASSPATH=`hadoop classpath`

再次执行:

$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml

很抱歉,继续报错:

Caused by: org.apache.flink.table.client.gateway.SqlExecutionException: Could not create execution context. at org.apache.flink.table.client.gateway.local.ExecutionContext$Builder.build(ExecutionContext.java:753) at org.apache.flink.table.client.gateway.local.LocalExecutor.openSession(LocalExecutor.java:228) at org.apache.flink.table.client.SqlClient.start(SqlClient.java:98) at org.apache.flink.table.client.SqlClient.main(SqlClient.java:178) Caused by: org.apache.flink.table.catalog.exceptions.CatalogException: Failed to create Hive Metastore client

这里就是 Hive 1.1.0 版本的 Jar 包与 Flink 出现版本不兼容性的问题了,解决方法是:

  1. 下载 apache-hive-1.2.1 版本
  2. 替换 Flink lib 目录下的 Hive Jar 包 删除掉 hive-exec-1.1.0-cdh5.16.2.jar、 hive-metastore-1.1.0-cdh5.16.2.jar 和 libfb303-0.9.3.jar,然后添加 hive-exec-1.2.1.jar、 hive-metastore-1.2.1.jar 和 libfb303-0.9.2.jar,再次查看 lib 目录:
$ tree lib
lib
├── flink-connector-hive_2.11-1.10.0.jar
├── flink-dist_2.11-1.10.0.jar
├── flink-hadoop-compatibility_2.11-1.10.0.jar
├── flink-shaded-hadoop-2-2.6.0-cdh5.16.2-9.0.jar
├── flink-table_2.11-1.10.0.jar
├── flink-table-blink_2.11-1.10.0.jar
├── hive-exec-1.2.1.jar
├── hive-metastore-1.2.1.jar
├── libfb303-0.9.2.jar
├── log4j-1.2.17.jar
└── slf4j-log4j12-1.7.15.jar

最后再执行:

$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml

这时,读者就可以看到手握栗子的可爱小松鼠了。

客户端.jpg

Flink SQL CLI 实践

在 Flink 1.10 版本(目前为 RC1 阶段) 中,Flink 社区对 SQL CLI 做了大量的改动,比如支持 View、支持更多的数据类型和 DDL 语句、支持分区读写、支持 INSERT OVERWRITE 等,实现了更多的 TableEnvironment API 的功能,更加方便用户使用。

接下来,笔者详细讲解 Flink SQL CLI。

0. Help

执行下面命令,登录 Flink SQL 客户端:

$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml
Flink SQL>

执行 HELP,查看 Flink SQL 支持的命令,如下为大部分常用的:

  • CREATE TABLE
  • DROP TABLE
  • CREATE VIEW
  • DESCRIBE
  • DROP VIEW
  • EXPLAIN
  • INSERT INTO
  • INSERT OVERWRITE
  • SELECT
  • SHOW FUNCTIONS
  • USE CATALOG
  • SHOW TABLES
  • SHOW DATABASES
  • SOURCE
  • USE
  • SHOW CATALOGS

1. Hive 操作

■ 1.1 创建表和导入数据

为了方便读者进行实验,笔者使用 ssb-dbgen 生成测试数据,读者也可以使用测试环境已有的数据来进行实验。

具体如何在 Hive 中一键式创建表并插入数据,可以参考笔者早期的项目 https://github.com/MLikeWater/ssb-kylin

■ 1.2 Hive 表

查看上个步骤中创建的 Hive 表:

0: jdbc:hive2://xx.xxx.xxx.xxx:10000> show tables;
+--------------+--+
|   tab_name   |
+--------------+--+
| customer     |
| dates        |
| lineorder    |
| p_lineorder  |
| part         |
| supplier     |
+--------------+--+

读者可以对 Hive 进行各种查询,对比后面 Flink SQL 查询的结果。

2. Flink 操作

■ 2.1 通过 HiveCatalog 访问 Hive 数据库

登录 Flink SQL CLI,并查询 catalogs:

$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml
Flink SQL> show catalogs;
default_catalog
staginghive

Flink SQL> use catalog staginghive;

通过 show catalogs 获取配置的所有 catalog。由于笔者在 sql-client-hive.yaml 文件中设置了默认的 catalog,即为 staginghive。如果需要切换到其他 catalog,可以使用 usecatalog xxx。

■ 2.2 查询 Hive 元数据

通过 Flink SQL 查询 Hive 数据库和表:

# 查询数据库
Flink SQL> show databases;
...
ssb
tmp
...
Flink SQL> use ssb;

# 查询表
Flink SQL> show tables;
customer
dates
lineorder
p_lineorder
part
supplier

# 查询表结构
Flink SQL> DESCRIBE customer;
root
|-- c_custkey: INT
|-- c_name: STRING
|-- c_address: STRING
|-- c_city: STRING
|-- c_nation: STRING
|-- c_region: STRING
|-- c_phone: STRING
|-- c_mktsegment: STRING

这里需要注意,Hive 的元数据在 Flink catalog 中都以小写字母使用。

■ 2.3 查询

接下来,在 Flink SQL CLI 中查询一些 SQL 语句,完整 SQL 参考 https://github.com/MLikeWater/ssb-kylin 的 README。

目前 Flink SQL 解析 Hive 视图元数据时,会遇到一些 Bug,比如执行 Q1.1 SQL:

Flink SQL> select sum(v_revenue) as revenue
> from p_lineorder
> left join dates on lo_orderdate = d_datekey
> where d_year = 1993
> and lo_discount between 1 and 3
> and lo_quantity < 25;

[ERROR] Could not execute SQL statement. Reason:
org.apache.calcite.sql.validate.SqlValidatorException: Tabeorder' not found; did you mean 'LINEORDER'?

Flink SQL 找不到视图中的实体表。

p_lineorder 表是 Hive 中的一张视图,创建表的语句如下:

CREATE VIEW P_LINEORDER AS
SELECT LO_ORDERKEY,
LO_LINENUMBER,
LO_CUSTKEY,
LO_PARTKEY,
LO_SUPPKEY,
LO_ORDERDATE,
LO_ORDERPRIOTITY,
LO_SHIPPRIOTITY,
LO_QUANTITY,
LO_EXTENDEDPRICE,
LO_ORDTOTALPRICE,
LO_DISCOUNT,
LO_REVENUE,
LO_SUPPLYCOST,
LO_TAX,
LO_COMMITDATE,
LO_SHIPMODE,
LO_EXTENDEDPRICE*LO_DISCOUNT AS V_REVENUE
FROM ssb.LINEORDER;

但是对于 Hive 中视图的定义,Flink SQL 并没有很好地处理元数据。为了后面 SQL 的顺利执行,这里笔者在 Hive 中删除并重建该视图:

0: jdbc:hive2://xx.xxx.xxx.xxx:10000> create view p_lineorder as
select lo_orderkey,
lo_linenumber,
lo_custkey,
lo_partkey,
lo_suppkey,
lo_orderdate,
lo_orderpriotity,
lo_shippriotity,
lo_quantity,
lo_extendedprice,
lo_ordtotalprice,
lo_discount,
lo_revenue,
lo_supplycost,
lo_tax,
lo_commitdate,
lo_shipmode,
lo_extendedprice*lo_discount as v_revenue
from ssb.lineorder;

然后继续在 Flink SQL CLI 中查询 Q1.1 SQL:

Flink SQL> select sum(v_revenue) as revenue
> from p_lineorder
> left join dates on lo_orderdate = d_datekey
> where d_year = 1993
> and lo_discount between 1 and 3
> and lo_quantity < 25;

revenue
894280292647

继续查询 Q2.1 SQL:

Flink SQL> select sum(lo_revenue) as lo_revenue, d_year, p_brand
> from p_lineorder
> left join dates on lo_orderdate = d_datekey
> left join part on lo_partkey = p_partkey
> left join supplier on lo_suppkey = s_suppkey
> where p_category = 'MFGR#12' and s_region = 'AMERICA'
> group by d_year, p_brand
> order by d_year, p_brand;

lo_revenue  d_year p_brand
819634128   1998   MFGR#1206
877651232   1998   MFGR#1207
754489428   1998   MFGR#1208
816369488   1998   MFGR#1209
668482306   1998   MFGR#1210
660366608   1998   MFGR#1211
862902570   1998   MFGR#1212
...

最后再查询一个 Q4.3 SQL:

Flink SQL> select d_year, s_city, p_brand, sum(lo_revenue) - sum(lo_supplycost) as profit
> from p_lineorder
> left join dates on lo_orderdate = d_datekey
> left join customer on lo_custkey = c_custkey
> left join supplier on lo_suppkey = s_suppkey
> left join part on lo_partkey = p_partkey
> where c_region = 'AMERICA'and s_nation = 'UNITED STATES'
> and (d_year = 1997 or d_year = 1998)
> and p_category = 'MFGR#14'
> group by d_year, s_city, p_brand
> order by d_year, s_city, p_brand;

d_year  s_city       p_brand       profit
1998    UNITED ST9   MFGR#1440     6665681

如果读者感兴趣的话,可以查询剩余的 SQL,当然也可以和 Spark SQL 进行比较。另外 Flink SQL 也支持 EXPLAIN,查询 SQL 的执行计划。

■ 2.4 创建视图

同样,可以在 Flink SQL CLI 中创建和删除视图,如下:

Flink SQL> create view p_lineorder2 as
> select lo_orderkey,
> lo_linenumber,
> lo_custkey,
> lo_partkey,
> lo_suppkey,
> lo_orderdate,
> lo_orderpriotity,
> lo_shippriotity,
> lo_quantity,
> lo_extendedprice,
> lo_ordtotalprice,
> lo_discount,
> lo_revenue,
> lo_supplycost,
> lo_tax,
> lo_commitdate,
> lo_shipmode,
> lo_extendedprice * lo_discount as v_revenue
> from ssb.lineorder;
[INFO] View has been created.

这里笔者需要特别强调的是,目前 Flink 无法删除 Hive 中的视图:

Flink SQL> drop view p_lineorder;
[ERROR] Could not execute SQL statement. Reason:
The given view does not exist in the current CLI session. Only views created with a CREATE VIEW statement can be accessed.

■ 2.5 分区操作

Hive 数据库中创建一张分区表:

CREATE TABLE IF NOT EXISTS flink_partition_test (
  id  int,
  name string
) PARTITIONED BY (day string, type string)
stored as textfile;

接着,通过 Flink SQL 插入和查询数据:

# 插入静态分区的数据
Flink SQL> INSERT INTO flink_partition_test PARTITION (type='Flink', `day`='2020-02-01') SELECT 100001, 'Flink001';

# 查询
Flink SQL> select * from flink_partition_test;

id       name       day            type
100001   Flink001   2020-02-01     Flink


# 插入动态分区
Flink SQL> INSERT INTO flink_partition_test SELECT 100002, 'Spark', '2020-02-02', 'SparkSQL';


# 查询
Flink SQL> select * from flink_partition_test;

id        name          day           type
100002    Spark         2020-02-02    SparkSQL
100001    FlinkSQL      2020-02-01    Flink


# 动态和静态分区结合使用类似,不再演示
# 覆盖插入数据
Flink SQL> INSERT OVERWRITE flink_partition_test PARTITION (type='Flink') SELECT 100002, 'Spark', '2020-02-08', 'SparkSQL-2.4';

id      name        day             type
100002  Spark       2020-02-02      SparkSQL
100001  FlinkSQL    2020-02-01      Flink

字段 day 在 Flink 属于关键字,要特殊处理。

■ 2.6 其他功能

  • 2.6.1 函数

Flink SQL 支持内置的函数和自定义函数。对于内置的函数,可以执行 show functions 进行查看,这一块笔者以后会单独介绍如何创建自定义函数。

  • 2.6.2 设置参数

Flink SQL 支持设置环境参数,可以使用 set 命令查看和设置参数:

Flink SQL> set;
deployment.gateway-address=
deployment.gateway-port=0
deployment.m=yarn-cluster
deployment.response-timeout=5000
deployment.yjm=1024
deployment.yn=2
deployment.ys=5
deployment.ytm=2048
execution.current-catalog=staginghive
execution.current-database=ssb
execution.max-idle-state-retention=0
execution.max-parallelism=128
execution.max-table-result-rows=1000000
execution.min-idle-state-retention=0
execution.parallelism=1
execution.periodic-watermarks-interval=200
execution.planner=blink
execution.restart-strategy.type=fallback
execution.result-mode=table
execution.time-characteristic=event-time
execution.type=batch

Flink SQL> set deployment.yjm = 2048;

总结

在本文中,笔者通过 Flink SQL 比较详细地去操作 Hive 数据库,以及 Flink SQL 提供的一些功能。

当然,目前 Flink SQL 操作 Hive 数据库还是存在一些问题:

  • 目前只支持 TextFile 存储格式,还无法指定其他存储格式

只支持 Hive 数据库中 TextFile 存储格式的表,而且 row format serde 是 org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe。虽然实现了 RCFile、ORC、Parquet、Sequence 等存储格式,但是无法自动识别 Hive 表的存储格式。如果要使用其他存储格式,需要修改源码,重新编译。不过社区已经对这些存储格式进行了测试,相信不久以后就可以在 Flink SQL 中使用。

  • OpenCSVSerde 支持不完善

如果读者使用 TextFile 的 row format serde 为 org.apache.hadoop.hive.serde2.OpenCSVSerde 时,无法正确识别字段类型,会把 Hive 表的字段全部映射为 String 类型。

  • 暂时不支持 Bucket 表
  • 暂时不支持 ACID 表
  • Flink SQL 优化方面功能较少
  • 权限控制方面

这方面和 Spark SQL 类似,目前基于 HDFS ACL 控制,暂时还没有实现 Sentry 或 Ranger 控制权限,不过目前 Cloudera 正在开发基于 Ranger 设置 Spark SQL 和 Hive 共享访问权限的策略,实现行/列级控制以及审计信息。

Flink 社区发展很快,所有这些问题只是暂时的,随着新版本的发布会被逐个解决。

如果 Flink SQL 目前不满足的需求,建议使用 API 方式来解决问题。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
5月前
|
SQL 物联网 数据处理
"颠覆传统,Hive SQL与Flink激情碰撞!解锁流批一体数据处理新纪元,让数据决策力瞬间爆表,你准备好了吗?"
【8月更文挑战第9天】数据时代,实时性和准确性至关重要。传统上,批处理与流处理各司其职,但Apache Flink打破了这一界限,尤其Flink与Hive SQL的结合,开创了流批一体的数据处理新时代。这不仅简化了数据处理流程,还极大提升了效率和灵活性。例如,通过Flink SQL,可以轻松实现流数据与批数据的融合分析,无需在两者间切换。这种融合不仅降低了技术门槛,还为企业提供了更强大的数据支持,无论是在金融、电商还是物联网领域,都将发挥巨大作用。
70 6
|
5月前
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 分布式计算 数据处理
实时计算 Flink版产品使用问题之怎么将数据从Hive表中读取并写入到另一个Hive表中
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版操作报错合集之从mysql读数据写到hive报错,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
SQL HIVE 流计算
如何在 Flink 1.9 中使用 Hive?
Apache Flink 从 1.9.0 版本开始增加了与 Hive 集成的功能,用户可以通过 Flink 来访问 Hive 的元数据,以及读写 Hive 中的表。本文将主要从项目的设计架构、最新进展、使用说明等方面来介绍这一功能。
如何在 Flink 1.9 中使用 Hive?
|
SQL 分布式计算 API
如何在 Flink 1.9 中使用 Hive?
Apache Flink 从 1.9.0 版本开始增加了与 Hive 集成的功能,用户可以通过 Flink 来访问 Hive 的元数据,以及读写 Hive 中的表。本文将主要从项目的设计架构、最新进展、使用说明等方面来介绍这一功能。
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1451 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
174 56

相关产品

  • 实时计算 Flink版