AI技术帮助全球抗疫保卫者获取信息

简介: 此次峰会的一大主题,就是讨论如何利用复杂的系统模型(例如基于代理的模型)为政策制定提供信息。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

最近,SingularityNET公司CEO Ben Goertzel博士决定召开COVID-19峰会,邀请AI与数据科学研究者群体中的资深人士,希望他们与流行病学家、一线医护人员以及决策者们一道,探讨目前抗疫保卫战的最新态势以及应对未来挑战的期望与思路。

此次峰会的一大主题,就是讨论如何利用复杂的系统模型(例如基于代理的模型)为政策制定提供信息。尽管已经从SARS以及MERS等以往传染病事件中积累到不少经验,但在这场疫情大流行当中,来自世界各地的决策者们仍普遍表示自己无法及时获取必要的应对信息。

而高复杂度自适应系统能够将人工智能与基于代理的模型相结合,帮助决策者带来前所未有的新能力,同时显著提升决策制定流程的透明度。

lixP5cN6QGIyQ_600

Ben Goertzel博士

livkwFYOEKU2_600

Deborah Duong博士

考虑到本次讨论主题的硬核技术属性,Rejuve公司AI开发主管兼SingularityNET网络分析主管Deborah Duong博士在演讲当中解释了基于代理的模型与人工智能相结合的具体实现方式,以及由此可以给决策者及其他抗疫专业人士带来的信息支持。

具体来讲,为了就可能颠覆现代文明社会核心结构的下一波疫情流行或者其他重大灾难做好准备,我们需要一套复杂的自适应系统作为信息枢纽。

复杂自适应系统能够为我们勾勒出整体态势

所谓复杂自适应系统,是指能够将人工智能的力量与基于代理的模拟方案相结合的系统,其将从根本上改变我们分析数据的方式。

Duong博士指出,“复杂自适应系统是指那些整体效能大于各部分之和的系统。我们能够借此从宏观上了解关于各组成部分的信息,而各个部分也将适应并改变整体态势。以此为基础,我们将得以在微观与宏观之间实现交互。”

例如,以COVID-19疫情大流行为例,早在制定社交隔离政策之前,世界上某些地区的居民就已经开始佩戴口罩以防止疾病传播。换言之,他们自发地改变了自己在公共场合的行为习惯。这正是个体在改变自己与周遭环境的微互动方式。而在宏观层面上,由于这些个人行为的转变,世界上某些地区及政府得以更从容地遏制COVID-19疫情。而且在早期行动者们的推动下,其他民众也更容易接受并遵守社交隔离政策。最终,微观与宏观的相互作用共同成就了良好的社交隔离回馈。

Duong博士还表示,“光靠数据有时候并不足以解决问题,但必须承认的是,数据与模式能够为政策制定带来启发。如果我们高度关注数据的处理方式,就可以利用复杂自适应系统分析空间数据与概念性数据中的模式,并借此完善政策成效。”

受到Michael Snyder博士收集并测量自身健康数据以分析人体炎症反应的启发,Duong博士和她的团队利用异常检测算法以分析可穿戴设备传出的信号,并采用Rejuve开发的应用程序收集到此次疫情流行中的大量个体反应。这些数据激发了她修改Ben Goertzel博士专为SingularityNET开发的“复杂自适应系统”的热情,希望在设计层面充分适应抗击COVID-19疫情的需要。

Duong博士解释道,“在COVID-19大流行期间,医疗保健工作者与其他普通劳动者仍然需要正常工作。即使他们正确佩戴口罩与手套,传染风险也仍然存在。因此,他们应当掌握关于自身健康以及工作场所病例分布的更多信息,引导他们做出明智的出行决定。如果可以及时使用可穿戴设备,这些产品将在他们进入高风险区域前发出提醒,或者是在他们可能遭受感染时提前与家人保持隔离。”

复杂自适应系统还有望帮助我们从已感染及未感染人群之间的交互数据当中,找出“COVID-19的数据签名”。

利用人工智能与因果推理发现的种种模式,将帮助我们识别出符合定义的概念性群体,并根据社会背景完成数据分析。

数据所有权、隐私与安全

目前,媒体在监督AI系统隐私、数据所有权以及安全性等方面表现得相当出色。我们可以构建起一套复杂自适应系统,确保每位民众都切实具备数据所有权、隐私与安全保障。与此同时,利用具备因果推理能力的人工智能方案,我们则可建立决策网络并及时向决策者提供信息支持。正如马尔可夫决策流程一样,我们可以在模拟场景中进行数据建模。只要一定比例的人口使用可穿戴设备,我们就能收集到制定准确政策所必需的最低数据量。

Duong博士表示,“如果我们拥有一台完全安全(经过加密)的自有可穿戴设备,并由AI负责发现决策模式而非识别个人身份,那么该设备即可及时将风险通报给佩戴者,并赋予他们自主决定的权利。与此同时,政策制定者则能够从个人决策中获取更多情报,据此出台符合民众判断的抗疫策略。”

细微差别,将决定政策的质量与成败

由于现有统计方法过于宽泛再加上方法层面的不确定性,决策者们在此次疫情流行期间制定的应对策略,往往无法兼顾细微层面的具体差别。

更重要的是,在制定社交隔离或出行政策时,某些特殊人群可能需要采取适合自己的针对性引导。

举例来说,在政策制定者要求人们进行社交隔离时,民众可能会问所谓的“社交隔离”或者说距离保持具体是多远?1米,还是2米?

在医院中,医护人员一直在与病毒传播进行艰苦斗争。更残酷的是,很多护理人员为了维持生计而不得不在多家医院之间往来奔波,这就带来了病毒在不同医院间传播的隐患。

Duong博士指出,“在复杂自适应系统当中,系统能够适应这些情况,并针对细微差别做出及时响应。政策制定者不仅可以为使用可穿戴设备的人们提供单独的建议,同时也能快速意识到细微差别对于整体系统乃至整个社会的影响。如果存在大量往来于多家医院的兼职护士,就必须出台相应的政策以避免他们在不同医院之间传播病毒。”

核心优势

使用复杂自适应系统分析Rejuve/COVID-19应用数据的核心优势,在于“让拉低病例曲线回归真实意义”。实际上,疫情流行期间很多人对于“拉低病例曲线”都存在误解,以为只要推行社交隔离措施,感染人数就会减少。而事实并非如此。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-12
本文来自:“科技行者”,了解相关信息可以关注“科技行者

相关文章
|
10天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
46 3
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
25 5
|
8天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
74 11
|
13天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
69 4
|
13天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
17天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
16天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
16天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
14天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第33天】随着人工智能技术的不断发展,其在医疗领域的应用也越来越广泛。从辅助诊断到治疗方案的制定,AI技术都发挥着重要作用。然而,随之而来的挑战也不容忽视,如数据隐私保护、算法的透明度和可解释性等问题。本文将探讨AI技术在医疗领域的应用及其面临的挑战。
26 0

热门文章

最新文章

下一篇
无影云桌面