TensorFlow On Flink 原理解析

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 本文将分享如何使用一套引擎搞定机器学习全流程的解决方案。先介绍一下典型的机器学习工作流程。如图所示,整个流程包含特征工程、模型训练、离线或者是在线预测等环节。

作者:陈戊超(仲卓),阿里巴巴技术专家

深度学习技术在当代社会发挥的作用越来越大。目前深度学习被广泛应用于个性化推荐、商品搜索、人脸识别、机器翻译、自动驾驶等多个领域,此外还在向社会各个领域迅速渗透。

背景

当前,深度学习的应用越来越多样化,随之涌现出诸多优秀的计算框架。其中 TensorFlow,PyTorch,MXNeT 作为广泛使用的框架更是备受瞩目。在将深度学习应用于实际业务的过程中,往往需要结合数据处理相关的计算框架如:模型训练之前需要对训练数据进行加工生成训练样本,模型预测过程中需要对处理数据的一些指标进行监控等。在这样的情况下,数据处理和模型训练分别需要使用不同的计算引擎,增加了用户使用的难度。

本文将分享如何使用一套引擎搞定机器学习全流程的解决方案。先介绍一下典型的机器学习工作流程。如图所示,整个流程包含特征工程、模型训练、离线或者是在线预测等环节。

图片 1.png

在此过程中,无论是特征工程、模型训练还是模型预测,中间都会产生日志。需要先用数据处理引擎比如 Flink 对这些日志进行分析,然后进入特征工程。再使用深度学习的计算引擎 TensorFlow 进行模型训练和模型预测。当模型训练好了以后再用 tensor serving 做在线的打分。

上述流程虽然可以跑通,但也存在一定的问题,比如:

  1. 同一个机器学习项目在做特征工程、模型训练、模型预测时需要用到 Flink 和 TensorFlow 两个计算引擎,部署相对而言更复杂。
  2. TensorFlow 在分布式的支持上还不够友好,运行过程中需要指定机器的 IP 地址和端口号;而实际生产过程经常是运行在一个调度系统上比如 Yarn,需要动态分配 IP 地址和端口号。
  3. TensorFlow 的分布式运行缺乏自动的 failover 机制。

    针对以上问题,我们通过结合 Flink 和 TensorFlow,将 TensorFlow 的程序跑在 Flink 集群上的这种方式来解决,整体流程如下:

图片 2.png

特征工程用 Flink 去执行,模型训练和模型的准实时预测目标使 TensorFlow 计算引擎可以跑在 Flink 集群上。这样就可以用 Flink 一套计算引擎去支持模型训练和模型的预测,部署上更简单的同时也节约了资源。

Flink 计算简介

图片 3.png

Flink 是一款开源大数据分布式计算引擎,在 Flink 里所有的计算都抽象成 operator,如上图所示,数据读取的节点叫 source operator,输出数据的节点叫 sink operator。source 和 sink 中间有多种多样的 Flink operator 去处理,上图的计算拓扑包含了三个 source 和两个 sink。

机器学习分布式拓扑

机器学习分布式运行拓扑如下图所示:

图片 4.png

在一个机器学习的集群当中,经常会对一组节点(node)进行分组,如上图所示,一组节点可以是 worker(运行算法),也可以是 ps(更新参数)。

如何将 Flink 的 operator 结构与 Machine Learning 的 node、Application Manager 角色结合起来?下面将详细讲解 flink-ai-extended 的抽象。

Flink-ai-extended 抽象

首先,对机器学习的 cluster 进行一层抽象,命名为 ML framework,同时机器学习也包含了 ML operator。通过这两个模块,可以把 Flink 和 Machine Learning Cluster 结合起来,并且可以支持不同的计算引擎,包括 TensorFlow。

如下图所示:

图片 5.png

在 Flink 运行环境上,抽象了 ML Framework 和 ML Operator 模块,负责连接 Flink 和其他计算引擎。

ML Framework

图片 6.png

ML Framework 分为 2 个角色。

  1. Application Manager(以下简称 am) 角色,负责管理所有 node 的节点的生命周期。
  2. node 角色,负责执行机器学习的算法程序。

在上述过程中,还可以对 Application Manager 和 node 进行进一步的抽象,Application Manager 里面我们单独把 state machine 的状态机做成可扩展的,这样就可以支持不同类型的作业。

深度学习引擎,可以自己定义其状态机。从 node 的节点抽象 runner 接口,这样用户就可以根据不同的深度学习引擎去自定义运行算法程序。

图片 7.png

ML Operator

ML Operator 模块提供了两个接口:

  1. addAMRole,这个接口的作用是在 Flink 的作业里添加一个 Application Manager 的角色。Application Manager 角色如上图所示就是机器学习集群的管理节点。
  2. addRole,增加的是机器学习的一组节点。

利用 ML Operator 提供的接口,可以实现 Flink Operator 中包含一个Application Manager 及 3 组 node 的角色,这三组 node 分别叫 role a、 role b,、role c,三个不同角色组成机器学习的一个 cluster。如上图代码所示。Flink 的 operator 与机器学习作业的 node 一一对应。

机器学习的 node 节点运行在 Flink 的 operator 里,需要进行数据交换,原理如下图所示:

图片 8.png

Flink operator 是 java 进程,机器学习的 node 节点一般是 python 进程,java 和 python 进程通过共享内存交换数据。
TensorFlow On Flink

TensorFlow 分布式运行

图片 9.png

TensorFlow 分布式训练一般分为 worker 和 ps 角色。worker 负责机器学习计算,ps 负责参数更新。下面将讲解 TensorFlow 如何运行在 Flink 集群中。

TensorFlow Batch 训练运行模式

图片 10.png

Batch 模式下,样本数据可以是放在 HDFS 上的,对于 Flink 作业而言,它会起一个source 的 operator,然后 TensorFlow 的 work 角色就会启动。如上图所示,如果 worker 的角色有三个节点,那么 source 的并行度就会设为 3。同理下面 ps 角色有 2 个,所以 ps source 节点就会设为 2。而 Application Manager 和别的角色并没有数据交换,所以 Application Manager 是单独的一个节点,因此它的 source 节点并行度始终为 1。这样 Flink 作业上启动了三个 worker 和两个 ps 节点,worker 和 ps 之间的通讯是通过原始的 TensorFlow 的 GRPC 通讯来实现的,并不是走 Flink 的通信机制。

TensorFlow stream 训练运行模式

图片 11.png

如上图所示,前面有两个 source operator,然后接 join operator,把两份数据合并为一份数据,再加自定义处理的节点,生成样本数据。在 stream 模式下,worker 的角色是通过 UDTF 或者 flatmap 来实现的。

同时,TensorFlow worker node 有3 个,所以 flatmap 和 UDTF 相对应的 operator 的并行度也为 3, 由于ps 角色并不去读取数据,所以是通过 flink source operator 来实现。

下面我们再讲一下,如果已经训练好的模型,如何去支持实时的预测。

使用 Python 进行预测

图片 12.png

使用 Python 进行预测流程如图所示,如果 TensorFlow 的模型是分布式训练出来的模型,并且这个模型非常大,比如说单机放不下的情况,一般出现在推荐和搜索的场景下。那么实时预测和实时训练原理相同,唯一不同的地方是多了一个加载模型的过程。

在预测的情况下,通过读取模型,将所有的参数加载到 ps 里面去,然后上游的数据还是经过和训练时候一样的处理形式,数据流入到 worker 这样一个角色中去进行处理,将预测的分数再写回到 flink operator,并且发送到下游 operator。

使用 Java 进行预测

图片 13.png

如图所示,模型单机进行预测时就没必要再去起 ps 节点,单个 worker 就可以装下整个模型进行预测,尤其是使用 TensorFlow 导出 save model。同时,因为 saved model 格式包含了整个深度学习预测的全部计算逻辑和输入输出,所以不需要运行 Python 的代码就可以进行预测。

此外,还有一种方式可以进行预测。前面 source、join、UDTF 都是对数据进行加工处理变成预测模型可以识别的数据格式,在这种情况下,可以直接在 Java 进程里面通过 TensorFlow Java API,将训练好的模型 load 到内存里,这时会发现并不需要 ps 角色, worker 角色也都是 Java 进程,并不是 Python 的进程,所以我们可以直接在 Java 进程内进行预测,并且可以将预测结果继续发给 Flink 的下游。

总结

在本文中,我们讲解了 flink-ai-extended 原理,以及Flink 结合 TensorFlow 如何进行模型训练和预测。希望通过本文大分享,大家能够使用 flink-ai-extended, 通过 Flink 作业去支持模型训练和模型的预测。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
机器学习/深度学习 消息中间件 存储
Alink、Tensorflow on Flink 在京东的应用
京东张颖、刘露在 FFA 2021 的分享内容
Alink、Tensorflow on Flink 在京东的应用
|
1月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
366 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3233 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
426 56
|
8月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
543 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
9月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
人工智能 Apache 流计算
Flink Forward Asia 2024 上海站|探索实时计算新边界
Flink Forward Asia 2024 即将盛大开幕!11 月 29 至 30 日在上海举行,大会聚焦 Apache Flink 技术演进与未来规划,涵盖流式湖仓、流批一体、Data+AI 融合等前沿话题,提供近百场专业演讲。立即报名,共襄盛举!官网:https://asia.flink-forward.org/shanghai-2024/
1214 33
Flink Forward Asia 2024 上海站|探索实时计算新边界

相关产品

  • 实时计算 Flink版