手把手教你利用Pyecharts库对IP代理数据进行数据可视化分析

简介:

/1 前言/

前几天小编发布了手把手教你使用Python爬取西次代理数据(上篇)和手把手教你使用Python爬取西次代理数据(下篇),木有赶上车的小伙伴,可以戳进去看看。今天小编带对爬取的数据进行可视化操作,数据可视化主要利用 pyecharts 库进行操作,具体步骤如下。

本次爬虫的目的主要是想分析代理在全国各城市的分布情况。小编的思路是对所有城市的代理数量进行一个统计,然后通过可视化技术构建一个代理热力分布图。整体思路是使用 pyecharts 构建一张热力分布图,用以直观展现各个城市的代理分布情况。

/2 代理分布统计/

Pyecharts 在进行热力图绘制的时候,需要提供城市名,但实际上从网上爬取到的位置数据并不是标准的城市名:
这个时候需要我们对这些数据进行处理,从位置中将城市名提取出来,例如:湖北十堰 需要提取出 十堰 来。

为了达到这个目的,我使用开源的** cpca** 库进行提取,该库主要使用结巴分词对数据进行处理,然后比对数据库,将省市县提取出来,一个直观的例子如下:
通过这种方式,我们就可以提取出城市名了,在然后在代码中实现如下:
 提取完城市数据之后,需要对城市的代理数量进行一个统计,总体思路是,构建一个列表。然后循环遍历抓取的城市,如果找到一个列表中没有的城市,就在列表中加入该城市,并把代理设置为 1,如果有该城市,则数量加 1。

通过这种方式,就将代理在各个城市的分布情况统计完毕了。接下来就是使用 pyecharts 进 行热力图绘制了。

/3 代理热力图绘制/

有了代理在各个城市的分布情况,接下来就需要进行热力图绘制,使用 pyecharts 加载我们之前统计好的列表即可, 代码如下:

程序执行完毕后,会在当前页面生成一个名叫全国代理分布.html的网页,使用 chrome或者 firefox 打开该网页即可看到热力分布结果, 如下图所示,其中颜色越深的地方代表代理数量越多。

全国代理分布图

数据视图

统计发现,代理主要分布在东部地区,东部地区又集中分布在广州、江浙、山东一带,而西部地区几乎没有,这也从另外以角度说明了互联网硬件设施在我国发展的很不均衡,绝大多数资源集中到了东部地区。

/4 小结/

本次任务主要爬取了代理网站上的代理数据,对代理在各个城 市的分布进行了统计分析,并利用可视化的技术进行代理分布热力图绘制。主要做了以下方 面的工作:

学习使用 pyecharts 库进行数据可视化;

学习使用 cpca 库进行中文数据分词。

得出了以下结论:

全国各地的网络代理主要分布在东部地区,东部地区又集中分布在广州、江浙、山东一带,而西部地区几乎没有,这也从一个角度说明了互联网硬件设施在我国发展的很不均衡,绝大多数资源集中到了东部地区。

Python 爬虫是一项综合技能,在爬取网站的过程中能够学到很多知识,希望大家多多专研。

如果有需要代码的小伙伴,可以在后台回复“代理”二字,即可获取。
相关文章
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
【数据分析与可视化】SKlearn主要功能和模块概述(图文解释 简单易懂)
【数据分析与可视化】SKlearn主要功能和模块概述(图文解释 简单易懂)
248 0
|
数据可视化 定位技术 Python
Python基础综合案例-数据可视化(地图)
今天给大家带来的是Python综合实战开发的数据可视化操作 通过python实现对数据的分析、可视化
114 0
|
JSON 数据可视化 数据处理
Python基础综合案例-数据可视化(折线图)
今天给大家带来的是Python综合实战开发的数据可视化操作 通过python实现对数据的分析、可视化
108 0
|
2月前
|
数据可视化 Python
Python数据可视化-动态柱状图可视化
Python数据可视化-动态柱状图可视化
|
4月前
|
人工智能 数据可视化 数据挖掘
LLM代理应用实战:构建Plotly数据可视化代理
构建数据可视化代理解决了LLM(大型语言模型)在理解和生成定制图表时的局限性。代理提供DataFrame信息和自定义样式工具,简化与LLM的交互。选择了Plotly而非Matplotlib,因其交互性和Web渲染能力更适合现代可视化。代理通过元数据索引了解数据集详情,并根据样式指示生成符合特定审美的图表。通过ReActAgent和Groq模型,代理能理解用户指令,生成准确的Plotly代码,从而创建定制图表,提高了数据可视化的效率和准确性。
110 1
|
4月前
|
数据可视化 数据挖掘 数据处理
深度挖掘!Python 数据分析中 Matplotlib 与 Seaborn 的隐藏功能,让数据可视化更出彩!
【7月更文挑战第23天】在Python数据分析中,Matplotlib与Seaborn是关键的可视化工具。Matplotlib提供深度自定义,如调整轴刻度和网格,支持多子图布局。Seaborn基于Matplotlib,简化美观图表生成,内置主题与调色板,适用于复杂统计图形如小提琴图和成对关系图,且无缝集成Pandas数据框。掌握这些库的高级功能,能显著提升数据可视化效果,助力数据分析决策。
47 4
|
6月前
|
数据可视化 Shell Python
如何使用Python实现简单的数据可视化
如何使用Python实现简单的数据可视化
38 0
|
6月前
|
数据采集 自然语言处理 数据可视化
怎么使用Pyecharts库对淘宝数据进行可视化展示
怎么使用Pyecharts库对淘宝数据进行可视化展示
112 0
|
6月前
|
数据可视化 数据挖掘 Python
【数据分析与可视化】Seaborn库简介及风格设置详解(图文解释 超详细)
【数据分析与可视化】Seaborn库简介及风格设置详解(图文解释 超详细)
329 1
|
数据可视化 数据挖掘 Python
第七次人口普查数据可视化分析实战——基于pyecharts(含数据和源码)
第七次人口普查数据可视化分析实战——基于pyecharts(含数据和源码)
第七次人口普查数据可视化分析实战——基于pyecharts(含数据和源码)
下一篇
无影云桌面