MaxComwwwzs12558comI3578II9877-pute 基本概念与术语

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

项目空间
• 项目空间(Project)是MaxCompute的基本组织单元,类似于传统数据库的DataBase或Schema的概念,是进行多用户隔离和访问控制的主要边界。项目空间中包含多个对象,例如表(Table)、资源(Resource)、函数(Function)和实例(Instance)等。
• 一个用户可以同时拥有多个项目空间的权限。通过安全授权,可以跨项目空间访问对象。
• 通过在MaxCompute客户端中运行use
project命令进入一个项目空间。


• 表是MaxCompute的数据存储单元,逻辑上是二维结构,MaxCompute中不同类型计算任务的操作对象(输入、输出)都是表。
• MaxCompute的表分为内部表和外部表(2.0版本开始支持)。
• 对于内部表,所有的数据都被存储在MaxCompute中。
• 对于外部表,MaxCompute并不真正持有数据,表格的数据可以存放在OSS或OTS中,MaxCompute仅会记录表格的Meta信息,OSS上的信息可以是非结构化的,例如视频、音频等。
• MaxCompute与Oracle等数据库不同,系统并不会自动创建dual表。

分区
• 分区表是指在创建表时指定分区空间,即指定表内的一个或某几个字段作为分区列。分区表实际就是对应分布式文件系统上的独立文件夹,该文件夹下是该分区的所有数据文件。
• 分区表的意义在于优化查询。查询表时通过where子句查询指定分区,避免全表扫描。
• MaxCompute将分区列的每个值作为一个分区,同时也可以指定多级分区,即将表的多个字段作为表的分区,如多级目录的关系。
• MaxCompute
2.0支持字段类型为TINYINT、SMALLINT、INT、BIGINT、VARCHAR、STRING的分区,虽然可以指定分区类型为BIGINT,但是除了表的字段表示为BIGINT,任何其他情况实际都被处理为STRING。建议使用STRING。

分区使用限制
• 单表分区层级最多为6级。
• 单表分区数最多允许60000个分区。
• 单词查询允许查询的最多分区个数为10000个。
• STRING分区类型的分区值不支持使用中文。
错误的分区使用方式:
select * from src where pt=20170601;
在这样的使用方式下,MaxCompute并不能保障分区过滤机制的有效性。pt是STRING类型,当STRING类型与BIGINT(20170601)比较时,MaxCompute会将二者转换为DOUBLE类型,此时有可能会有精度损失。

生命周期
MaxCompute表的生命周期(Lifecycle),指表(分区)数据从最后一次更新的时间算起,在经过指定的时间后没有变动,则此表(分区)将被MaxCompute自动回收,这个指定的时间就是生命周期。
• 生命周期单位:Days(天),只接受正整数。
• 对于非分区表,如果表数据在生命周期内没有被修改,生命周期结束时,此表将会被MaxCompute自动回收(类似drop table),生命周期从最后一次表数据被修改的时间(LastDataModifiedTime)起进行计算。
• 对于分区表,每个分区可以分别被回收,在生命周期内数据未被修改的分区,经过指定的天数后,此分区将会被回收,否则会被保留。同理,生命周期是从最后一次分区数据被修改的时间起进行计算。不同于非分区表的是,分区表的最后一个分区被回收后,该表不会被删除。
• 生命周期回收为每天定时启动,扫描所有分区,只有被扫描时发现分区/表超过生命周期的指定时间,分区/表才会被回收。
• 生命周期只能设定到表级别,不能设定到分区级,创建表时即可指定生命周期。

资源
资源(Resource)是MaxCompute的特有概念,如果需要使用UDF、MapReduce,读取第三方库等,都需要依赖资源来完成,如下所示:
• SQL UDF:编写UDF时,需要将编译好的jar包或编写好的Python UDF脚本文件以资源的形式上传到MaxCompute,运行UDF时,MaxCompute会自动下载jar包或python脚本来运行UDF。
• MapReduce:编写MapReduce程序后,将编译好的jar包上传到MaxCompute,运行MapReduce作业时,MapReduce框架会自动下载这个资源从而获取代码。
• MaxCompute支持上传的单个资源大小上限为500MB,资源包括File类型、Table类型、Jar类型和Archive类型。

函数
MaxCompute提供了内建函数与自定义函数,自定义函数分为标量值函数(UDF)、自定义聚合函数(UDAF)和自定义表值函数(UDTF)。
• UDF
广义的UDF代表自定义标量函数、自定义聚合函数及自定义表函数三种类型的自定义函数的集合。狭义的UDF指用户自定义标量值函数,即读入一行数据,写出一条输出。
• UDAF
自定义聚合函数,即多条输入记录聚合成一条输出值,可以与SQL中的GROUP BY语句联用。
• UDTF
自定义表值函数,输入多个字段,返回多个字段,逐行记录进行处理。简单的说,UDF是特殊的UDTF。

任务
任务(Task)是MaxCompute的基本计算单元,对于计算型任务,例如SQL、MapReduce,MaxCompute会对其进行解析,得出任务的执行计划,执行计划由具有依赖关系的多个执行阶段(Stage)构成。
• 执行计划逻辑上可以被看做一个有向无环图,图中的点是执行阶段,各个执行阶段的依赖关系是图的边。MaxCompute会依照图(执行计划)中的依赖关系执行各个阶段。在同一个执行阶段内,会有多个进程,也称之为Worker,共同完成该执行阶段的计算工作。同一个执行阶段的不同Worker只是处理的数据不同,执行逻辑完全相同。计算型任务在执行时,会被实例化。
• 另一方面,部分MaxCompute任务并不是计算型的任务,例如SQL中的DDL语句,这些任务本质上仅需要读取、修改MaxCompute中的元数据信息,因此这些任务无法被解析出执行计划。

任务实例
在MaxCompute中,部分任务在执行时会被实例化,任务实例会经历运行(Running)和结束(Terminated)两个阶段。运行阶段的状态为Running,而结束阶段会有Success、Failed、Canceled三种状态。
ACID语义

相关术语
• 操作:指在MaxCompute上提交的单个作业。
• 数据对象:指持有实际数据的对象,例如非分区表、分区。
• INTO类作业:INSERT INTO、DYNAMIC INSERT INTO等。
• OVERWRITE类作业:INSERT OVERWRITE、DYNAMIC INSERT OVERWRITE等。
• Tunnel数据上传:可以归结为INTO类或OVERWRITE类作业。
ACID语义描述
• 原子性(Atomicity):一个操作或是全部完成,或是全部不完成,不会结束在中间某个环节。
• 一致性(Consistency):从操作开始至结束的期间,数据对象的完整性没有被破坏。
• 隔离性(Isolation):操作独立于其它并发操作完成。
• 持久性(Durabillity):操作处理结束后,对数据的修改将永久有效,即使出现系统故障,该修改也不会丢失。
MaxCompute的ACID具体情形
• 原子性(Atomicity)
• 任何时候MaxCompute会保证在冲突时只会有一个作业成功,其它冲突作业失败。
• 对于单个表/分区的CREATE/OVERWRITE/DROP操作,可以保证其原子性。
• 跨表操作时不支持原子性(例如MULTI-INSERT)。
• 在极端情况下,以下操作可能不保证原子性:
• DYNAMIC INSERT OVERWRITE多于一万个分区,不支持原子性。
• INTO类操作:事务回滚时会有数据清理失败。
• 一致性(Consistency)
• OVERWRITE类作业可保证一致性。
• INTO类作业在冲突失败后可能存在失败作业的数据残留。
• 隔离性(Isolation)
• 非INTO类操作保证读已提交。
• INTO类操作存在读未提交的场景。
• 持久性(Durability)
• MaxCompute保证数据的持久性。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2天前
|
负载均衡 并行计算 安全
秒懂IT术语
本文以幽默的方式,将恋爱关系比作计算机领域的各种技术概念,如冷备份、双机热备份、异地容灾备份、云备份、灾难演练、ping、TraceRoute、心跳监测、故障切换、主从配置、负载均衡、集群LVS、多集群横向扩容、纵向扩容、CDN、DOS/DDOS攻击、访问控制、入侵检测/防御系统、SIEM/SOC、等级保护、专线/租用专线/SDWAN、VPN、逆向工程、压力测试、数据分析、并行计算、云计算、数据挖掘、精准推送、容器、实时数据采集、虚拟化、大数据中心、大数据应用、大数据脱敏、数据融合跨域建模、大数据变现、数据简化等。通过这些比喻,生动形象地展示了技术原理及其应用场景。
86 59
|
12月前
|
存储 Kubernetes 网络协议
k8s教程(基础篇)-基本概念和术语(上)
k8s教程(基础篇)-基本概念和术语(上)
127 0
|
12月前
|
存储 Kubernetes API
k8s教程(基础篇)-基本概念和术语(下)
k8s教程(基础篇)-基本概念和术语(下)
83 0
|
存储 NoSQL C语言
基本概念和术语
基本概念和术语
|
存储 Kubernetes 负载均衡
K8S(一)基本概念篇
最近公司要搭建一个微服务项目,之前的docker-compose部署的方式需要替换成K8S了,然后,哈哈,这个机会了又落到我身上了,虽然我并不知道怎么部署,但是我还是挺高兴的,又可以边学习边运用了,真是不赖。接下来不定期更新K8S系列文章,记录我的成长和踩坑记。
125 0
|
存储 NoSQL C语言
一、基本概念和术语
一、基本概念和术语
一、基本概念和术语
|
机器学习/深度学习 传感器 人工智能
强化学习相关的主要概念和术语简介
强化学习相关的主要概念和术语简介
198 0
强化学习相关的主要概念和术语简介
|
运维 Kubernetes 持续交付
图解 K8s 核心概念和术语
我第一次接触容器编排调度工具是 Docker 自家的 Docker Swarm,主要解决当时公司内部业务项目部署繁琐的问题,我记得当时项目实现容器化之后,花在项目部署运维的时间大大减少了,当时觉得这玩意还挺新鲜的,原来自动化运维可以这么玩。后面由于工作原因,很久没碰过容器方面的知识了。最近在公司的数据同步项目中,需要使用到分布式调度数据同步执行单元,目前使用的方案是将数据同步执行单元打包成镜像,使用 K8s 进行调度,正好趁这个机会了解一下 K8s,下面我就用图解的形式将我所理解的 K8s 分享给大家。
434 0
图解 K8s 核心概念和术语
|
存储 算法 NoSQL
数据结构与算法——基本概念和术语
数据结构与算法——基本概念和术语
|
存储 关系型数据库 数据库
ORDBMS 术语
ORDBMS 术语
124 0