手把手教你使用Python爬取西刺代理数据(下篇)

简介:

/1 前言/

前几天小编发布了手把手教你使用Python爬取西次代理数据(上篇),图片描述木有赶上车的小伙伴,可以戳进去看看。今天小编带大家进行网页结构的分析以及网页数据的提取,具体步骤如下。

/2 首页分析及提取/

首先进入网站主页,如下图所示。
图片描述

简单分析下页面,其中后面的 1 是页码的意思,分析后发现每一页有100 多条数据,然后网站底部总共有 2700+页 的链接,所以总共ip 代理加起来超过 27 万条数据,但是后面的数据大部分都是很多年前的数据了,比如 2012 年,大概就前 5000 多条是最近一个月的,所以决定爬取前面100 页。通 过网站 url 分析,可以知道这 100 页的 url 为:
图片描述

规律显而易见,在程序中,我们使用一个 for 循环即可完整这个操作:
图片描述

其中 scrapy 函数是爬取的主要逻辑,对应的代码为:
图片描述

通过这个方式,我们可以得到每一页的数据。

/3 网页元素分析及提取/

接下来就是对页面内的元素进行分析,提取其中的代理信息。
图片描述

如上图,我们目的是进行代理地域分布分析,同时,在爬取过程中需要使用爬取的数据进行代 理更新,所以需要以下几个字段的信息:

Ip 地址、端口、服务器位置、类型

为此,先构建一个类,用于保存这些信息:
图片描述

这样,每爬取一条信息,只要实例化一个 ProxyBean 类即可,非常方便。

接下来就是提取元素过程了,在这个过程我使用了正则表达式和 BeautifulSoup 库进行关键数据提取。

首先,通过分析网页发现,所有的条目实际上都是放在一个

该便签内容如下:

我们首先通过正则表达式将该标签的内容提取出来: 正则表达式为: , 表示搜索

之 间的任意字符组成的数据。Python 中的实现如下:
图片描述

其中得到的 data 就是这个标签的内容了。下面进一步分析。

进入到 table 中,发现每一个代理分别站 table 的一列,但是这些标签分为两类,一 类包含属性 class=“odd”, 另一类不包含。
图片描述

这个时候,可以使用 BeautifulSoup 对标签进行提取:
图片描述

通过这种方式,就能获取到每一个列的列表了。

接下来就是从每个列中获取 ip、端口、位置、类型等信息了。进一步分析页面:

1、IP 字段:
图片描述

我们使用正则表达式对 IP 进行解析,IP 正则如下:

(2[0-5]{2}|[0-1]?d{1,2})(.(2[0-5]{2}|[0-1]?d{1,2})){3}
图片描述

2、 端口字段
图片描述

端口由包裹,并且中间全部是数字,故可构造如下正则进行提取:

([0-9]+)
图片描述

3、 位置字段

位置字段如下:
图片描述

由 便签包裹,构造如下正则即可提取:
http://pdcfighting.com/

相关文章
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
103 0
|
29天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
13天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
23 1
|
14天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
15天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
50 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
1月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
42 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
1月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
73 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
27天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
54 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
48 2
下一篇
无影云桌面