Python 3.9 性能优化:更快的 list()、dict() 和 range() 等内置类型

简介:

Python 3.9 性能优化:更快的 list()、dict() 和 range() 等内置类型

Python 的 3.9.0 版本正在开发中,计划在 2020-10-05 发布 final 版本。

官方在 changelog 中披露了很多细节,其中有一项“vectorcall”特性是最容易被接受的,本文打算带大家先来一探究竟。

事实上,早在 Python 3.8 版本中就已部分地实现了 vectorcall,只不过它是暂时性的,被隐藏起来了,按计划是在 3.9 版本中实现完全体。下图是 3.8 版本中的简介:

那么,什么是 vectorcall 呢?它会带来哪些变化呢?

“a fast calling protocol for CPython”,即它是 CPython 的一种快速调用协议,可以加速 CPython 解释器在调用类对象时的速度。

(PS:需要注意的是,这里说的“协议”是一种广义的称呼,它跟我们熟知的网络协议或通信协议不同,可理解为对代码作调用时的一种约定、一种实现方式)

这种协议是在 PEP-590 中被提出的(时间是 2019-03-29),对应的 bpo 是 issue37207,历时近一年的开发,目前它的实现已合入了代码仓。

用一句话概括它的核心要点是:它将提升 list()、tuple()、dict() 等主要类型的调用速度,同时它还可以被用在自定义的类上。

结合 PEP 与 bpo 信息,我提炼了以下的详细要点:

vectorcall 是对 fastcall 的正式化。在之前的 CPython 中存在一些零散的优化点(即 fastcall),如今官方把它们系统化了,给出了一个正式的“vectorcall”称呼
vectorcall 适用于多数内置类型。据当前的披露信息,它适用于 list、tuple、dict、set、frozenset 与 range 这 6 种主要的内置类型(部分测量数据显示,速度提升率达 10%~30%)
vectorcall 是对性能与灵活性的调和。之前的解释器具有很高的灵活性,但是在对象调用过程中,存在不必要的中间对象以及间接的调用开销,如今是设法消除了这部分开销,得以提升了性能
PEP-590 中还详细介绍了 CPython 的实现细节,并罗列了 C API 的变化点,这部分内容就不展开了,感兴趣的同学请自行查阅文档。

--------猫哥碎碎念分割线--------

主要的内容就算介绍完了,它很简单,并不难理解,不会带来学习的负担,也不会造成什么意见分歧。

但是说句老实话,这个性能提升可能显得有点“费力不讨好”:内置类型的调用速度并不会造成什么性能问题(并不慢),而提升空间也仅是纳秒/微秒级别,非常有限。多名核心开发者花费大半年时间和精力,到底值不值得?

我们恐怕都没有对此作出价值评判的资格。仁者见仁,智者见智。

但是,也许我们可以往乐观的方面想:对于这种微不足道的性能提升,核心开发者们都能认真对待、精益求精、持续投入、考虑全面,那在其它方面上也绝不会逊色。所以,我们有理由对 Python 的未来保持乐观的希望!

原文地址https://my.oschina.net/u/4051725/blog/3295757

相关文章
|
2月前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
【10月更文挑战第12天】本文探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
39 5
|
11天前
|
数据挖掘 大数据 数据处理
python--列表list切分(超详细)
通过这些思维导图和分析说明表,您可以更直观地理解Python列表切分的概念、用法和实际应用。希望本文能帮助您更高效地使用Python进行数据处理和分析。
23 14
|
12天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
54 8
|
1月前
|
Python
Python中的`range`函数与负增长
在Python中,`range`函数用于生成整数序列,支持正向和负向增长。本文详细介绍了如何使用`range`生成负增长的整数序列,并提供了多个实际应用示例,如反向遍历列表、生成倒计时和计算递减等差数列的和。通过这些示例,读者可以更好地掌握`range`函数的使用方法。
47 5
|
1月前
|
Python
在 Python 中实现各种类型的循环判断
在 Python 中实现各种类型的循环判断
33 2
|
2月前
|
存储 数据安全/隐私保护 索引
|
1月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
53 1
|
1月前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
48 8
|
1月前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
性能优化与代码审查:提升Python开发效率
41 1
|
1月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
42 3